21 research outputs found

    Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC6803

    Get PDF
    BACKGROUND: The production of biofuels in photosynthetic microalgae and cyanobacteria is a promising alternative to the generation of fuels from fossil resources. To be economically competitive, producer strains need to be established that synthesize the targeted product at high yield and over a long time. Engineering cyanobacteria into forced fuel producers should considerably interfere with overall cell homeostasis, which in turn might counteract productivity and sustainability of the process. Therefore, in-depth characterization of the cellular response upon long-term production is of high interest for the targeted improvement of a desired strain. RESULTS: The transcriptome-wide response to continuous ethanol production was examined in Synechocystis sp. PCC6803 using high resolution microarrays. In two independent experiments, ethanol production rates of 0.0338% (v/v) ethanol d(-1) and 0.0303% (v/v) ethanol d(-1) were obtained over 18 consecutive days, measuring two sets of biological triplicates in fully automated photobioreactors. Ethanol production caused a significant (~40%) delay in biomass accumulation, the development of a bleaching phenotype and a down-regulation of light harvesting capacity. However, microarray analyses performed at day 4, 7, 11 and 18 of the experiment revealed only three mRNAs with a strongly modified accumulation level throughout the course of the experiment. In addition to the overexpressed adhA (slr1192) gene, this was an approximately 4 fold reduction in cpcB (sll1577) and 3 to 6 fold increase in rps8 (sll1809) mRNA levels. Much weaker modifications of expression level or modifications restricted to day 18 of the experiment were observed for genes involved in carbon assimilation (Ribulose bisphosphate carboxylase and Glutamate decarboxylase). Molecular analysis of the reduced cpcB levels revealed a post-transcriptional processing of the cpcBA operon mRNA leaving a truncated mRNA cpcA* likely not competent for translation. Moreover, western blots and zinc-enhanced bilin fluorescence blots confirmed a severe reduction in the amounts of both phycocyanin subunits, explaining the cause of the bleaching phenotype. CONCLUSIONS: Changes in gene expression upon induction of long-term ethanol production in Synechocystis sp. PCC6803 are highly specific. In particular, we did not observe a comprehensive stress response as might have been expected

    The Optimal Mutagen Dosage to Induce Point-Mutations in <em>Synechocystis</em> sp. PCC6803 and Its Application to Promote Temperature Tolerance

    Get PDF
    <div><p>Random mutagenesis is a useful tool to genetically modify organisms for various purposes, such as adaptation to cultivation conditions, the induction of tolerances, or increased yield of valuable substances. This is especially attractive for systems where it is not obvious which genes require modifications. Random mutagenesis has been extensively used to modify crop plants, but even with the renewed interest in microalgae and cyanobacteria for biofuel applications, there is relatively limited current research available on the application of random mutagenesis for these organisms, especially for cyanobacteria. In the presented work we characterized the lethality and rate of non-lethal point mutations for ultraviolet radiation and methyl methanesulphonate on the model cyanobacteria <em>Synechocystis</em> sp. PCC6803. Based on these results an optimal dosage of 10–50 J/m<sup>2</sup> for UV and either 0.1 or 1 v% for MMS was determined. A <em>Synechocystis</em> wildtype culture was then mutagenized and selected for increased temperature tolerance <em>in vivo</em>. During the second round of mutagenesis the viability of the culture was monitored on a cell by cell level from the treatment of the cells up to the growth at an increased temperature. After four distinct rounds of treatment (two with each mutagen) the temperature tolerance of the strain was effectively raised by about 2°C. Coupled with an appropriate <em>in vivo</em> screening, the described methods should be applicable to induce a variety of desirable characteristics in various strains. Coupling random mutagenesis with high-throughput screening methods would additionally allow to select for important characteristics for biofuel production, which do not yield a higher fitness and can not be selected for <em>in vivo</em>, such as fatty acid concentration. In a combined approach with full genome sequencing random mutagenesis could be used to determine suitable target-genes for more focused methods.</p> </div

    Summary of the conditions and results of each round of mutagenesis.

    No full text
    *<p>Note that in the 3rd round of mutagenesis there was a technical problem with the temperation, and cultures were also temperated during the night cycle, leading to many more cells dying than usual. A recovery at lower temperature was used to rescue surviving cells.</p

    Biochemical Evidence for a Timing Mechanism in Prochlorococcus▿ †

    No full text
    Organisms coordinate biological activities into daily cycles using an internal circadian clock. The circadian oscillator proteins KaiA, KaiB, and KaiC are widely believed to underlie 24-h oscillations of gene expression in cyanobacteria. However, a group of very abundant cyanobacteria, namely, marine Prochlorococcus species, lost the third oscillator component, KaiA, during evolution. We demonstrate here that the remaining Kai proteins fulfill their known biochemical functions, although KaiC is hyperphosphorylated by default in this system. These data provide biochemical support for the observed evolutionary reduction of the clock locus in Prochlorococcus and are consistent with a model in which a mechanism that is less robust than the well-characterized KaiABC protein clock of Synechococcus is sufficient for biological timing in the very stable environment that Prochlorococcus inhabits

    Characterization of UV.

    No full text
    <p>Survival rate (green; triangle) and point mutation rate (blue; square) plotted over the administered dosage of UV irradiation. The counted colonies for the survival rate and the point mutation rate were normalized by setting the control to 100%.</p
    corecore