251 research outputs found

    Assessment of radar resolution requirements for soil moisture estimation from simulated satellite imagery

    Get PDF
    Radar simulations were performed at five-day intervals over a twenty-day period and used to estimate soil moisture from a generalized algorithm requiring only received power and the mean elevation of a test site near Lawrence, Kansas. The results demonstrate that the soil moisture of about 90% of the 20-m by 20-m pixel elements can be predicted with an accuracy of + or - 20% of field capacity within relatively flat agricultural portions of the test site. Radar resolutions of 93 m by 100 m with 23 looks or coarser gave the best results, largely because of the effects of signal fading. For the distribution of land cover categories, soils, and elevation in the test site, very coarse radar resolutions of 1 km by 1 km and 2.6 km by 3.1 km gave the best results for wet moisture conditions while a finer resolution of 93 m by 100 m was found to yield superior results for dry to moist soil conditions

    Crop classification using airborne radar and LANDSAT data

    Get PDF
    Airborne radar data acquired with a 13.3 GHz scatterometer over a test-site near Colby, Kansas were used to investigate the statistical properties of the scattering coefficient of three types of vegetation cover and of bare soil. A statistical model for radar data was developed that incorporates signal-fading and natural within-field variabilities. Estimates of the within-field and between-field coefficients of variation were obtained for each cover-type and compared with similar quantities derived from LANDSAT images of the same fields. The classification accuracy provided by LANDSAT alone, radar alone, and both sensors combined was investigated. The results indicate that the addition of radar to LANDSAT improves the classification accuracy by about 10; percentage-points when the classification is performed on a pixel basis and by about 15 points when performed on a field-average basis

    Design data collection with Skylab/EREP microwave instrument S-193

    Get PDF
    There are no author-identified significant results in this report

    A simulation study of scene confusion factors in sensing soil moisture from orbital radar

    Get PDF
    Simulated C-band radar imagery for a 124-km by 108-km test site in eastern Kansas is used to classify soil moisture. Simulated radar resolutions are 100 m by 100 m, 1 km by 1km, and 3 km by 3 km. Distributions of actual near-surface soil moisture are established daily for a 23-day accounting period using a water budget model. Within the 23-day period, three orbital radar overpasses are simulated roughly corresponding to generally moist, wet, and dry soil moisture conditions. The radar simulations are performed by a target/sensor interaction model dependent upon a terrain model, land-use classification, and near-surface soil moisture distribution. The accuracy of soil-moisture classification is evaluated for each single-date radar observation and also for multi-date detection of relative soil moisture change. In general, the results for single-date moisture detection show that 70% to 90% of cropland can be correctly classified to within +/- 20% of the true percent of field capacity. For a given radar resolution, the expected classification accuracy is shown to be dependent upon both the general soil moisture condition and also the geographical distribution of land-use and topographic relief. An analysis of cropland, urban, pasture/rangeland, and woodland subregions within the test site indicates that multi-temporal detection of relative soil moisture change is least sensitive to classification error resulting from scene complexity and topographic effects

    Design data collection with Skylab/EREP microwave instrument S-193

    Get PDF
    There are no author-identified significant results in this report

    Design data collection with skylab/EREP microwave instrument S-193

    Get PDF
    There are no author-identified significant results in this report

    Martian surface physical properties to be derived by radar altimeter on the Mars observer spacecraft

    Get PDF
    The potential is described of a candidate Mars Observer altimeter for determining dielectric properties of Mars regolith. It is pointed out that it is straightforward to use the time between altimeter pulse trains for passive radiometry (hence dielectric properties) and roughness can be derived. Given the mission plan the whole surface can be mapped at least three times, yielding data on seasonal variability

    Crop classification using multidate/multifrequency radar data

    Get PDF
    Both C- and L-band radar data acquired over a test site near Colby, Kansas during the summer of 1978 were used to identify three types of vegetation cover and bare soil. The effects of frequency, polarization, and the look angle on the overall accuracy of recognizing the four types of ground cover were analyzed. In addition, multidate data were used to study the improvement in recognition accuracy possible with the addition of temporal information. The soil moisture conditions had changed considerably during the temporal sequence of the data; hence, the effects of soil moisture on the ability to discriminate between cover types were also analyzed. The results provide useful information needed for selecting the parameters of a radar system for monitoring crops

    Kansas environmental and resource study: A Great Plains model, tasks 1-6

    Get PDF
    There are no author identified significant results in this report. Environmental and resources investigations in Kansas utilizing ERTS-1 imagery are summarized for the following areas: (1) use of feature extraction techniqued for texture context information in ERTS imagery; (2) interpretation and automatic image enhancement; (3) water use, production, and disease detection and predictions for wheat; (4) ERTS-1 agricultural statistics; (5) monitoring fresh water resources; and (6) ground pattern analysis in the Great Plains
    • …
    corecore