7 research outputs found

    Inhibition of Fibrinolysis by Coagulation Factor XIII

    Get PDF
    The inhibitory effect of coagulation factor XIII (FXIII) on fibrinolysis has been studied for at least 50 years. Our insight into the underlying mechanisms has improved considerably, aided in particular by the discovery that activated FXIII cross-links α2-antiplasmin (α2AP) to fibrin. In this review, the most important effects of different cross-linking reactions on fibrinolysis are summarized. A distinction is made between fibrin-fibrin cross-links studied in purified systems and fibrin-α2AP cross-links studied in plasma or whole blood systems. While the formation of γ chain dimers in fibrin does not affect clot lysis, the formation of α chain polymers has a weak inhibitory effect. Only strong cross-linking of fibrin, associated with high molecular weight α chain polymers and/or γ chain multimers, results in a moderate inhibition fibrinolysis. The formation of fibrin-α2AP cross-links has only a weak effect on clot lysis, but this effect becomes strong when clot retraction occurs. Under these conditions, FXIII prevents α2AP being expelled from the clot and makes the clot relatively resistant to degradation by plasmin

    Compaction of fibrin clots reveals the antifibrinolytic effect of factor XIII

    Get PDF
    Essentials Factor XIIIa inhibits fibrinolysis by forming fibrin-fibrin and fibrin-inhibitor cross-links. Conflicting studies about magnitude and mechanisms of inhibition have been reported. Factor XIIIa most strongly inhibits lysis of mechanically compacted or retracted plasma clots. Cross-links of α2-antiplasmin to fibrin prevent the inhibitor from being expelled from the clot. Summary: Background Although insights into the underlying mechanisms of the effect of factor XIII on fibrinolysis have improved considerably in the last few decades, in particular with the discovery that activated FXIII (FXIIIa) cross-links α2-antiplasmin to fibrin, the topic remains a matter of debate. Objective To elucidate the mechanisms of the antifibrinolytic effect of FXIII. Methods and Results Platelet-poor plasma clot lysis, induced by the addition of tissue-type plasminogen activator, was measured in the presence or absence of a specific FXIIIa inhibitor. Both in a turbidity assay and in a fluorescence assay, the FXIIIa inhibitor had only a small inhibitory effect: 1.6-fold less tissue-type plasminogen activator was required for 50% clot lysis in the presence of the FXIIIa inhibitor. However, when the plasma clot was compacted by centrifugation, the FXIIIa inhibitor had a strong inhibitory effect, with 7.7-fold less tissue-type plasminogen activator being required for 50% clot lysis in the presence of the FXIIIa inhibitor. In both experiments, the effects of the FXIIIa inhibitor were entirely dependent on the cross-linking of α2-antiplasmin to fibrin. The FXIIIa inhibitor reduced the amount of α2-antiplasmin present in the compacted clots from approximately 30% to < 4%. The results were confirmed with experiments in which compaction was achieved by platelet-mediated clot retraction. Conclusions Compaction or retraction of fibrin clots reveals the strong antifibrinolytic effect of FXIII. This is explained by the cross-linking of α2-antiplasmin to fibrin by FXIIIa, which prevents the plasmin inhibitor from being fully expelled from the clot during compaction/retraction

    Generation and characterization of monoclonal antibodies against the N-terminus of alpha-2-antiplasmin

    Get PDF
    Around 70% of circulating alpha-2-antiplasmin (α2AP), the main natural plasmin inhibitor, is N-terminally cleaved between residues Pro12 and Asn13 by antiplasmin-cleaving enzyme. This converts native Met-α2AP into the more potent fibrinolysis inhibitor Asn-α2AP. The Arg6Trp (R6W) polymorphism affects the N-terminal cleavage rate of Met-α2AP in a purified system, with ~8-fold faster conversion of Met(R6)-α2AP than Met(W6)-α2AP. To date, assays to determine N-terminally intact Met-α2AP in plasma have been limited to an ELISA that only measures Met(R6)-α2AP. The aim of this study was to generate and characterize monoclonal antibodies (mAbs) against Met(R6)-α2AP, Met(W6)-α2AP and all α2AP forms (total-α2AP) in order to develop specific Met(R6)-α2AP and Met(W6)-α2AP ELISAs. Recombinant Met(R6)-α2AP, Met(W6)-α2AP and Asn-α2AP were expressed in Drosophila S2 cells. Using hybridoma technology, a panel of 25 mAbs was generated against a mixture of recombinant Met(R6)-α2AP and Met(W6)-α2AP. All mAbs were evaluated for their specific reactivity using the three recombinant α2APs in one-site non-competitive ELISAs. Three mAbs were selected to develop sandwich-type ELISAs. MA-AP37E2 and MA-AP34C4 were selected for their specific reactivity against Met(R6)-α2AP and Met(W6)-α2AP, respectively, and used for coating. MA-AP15D7 was selected for its reactivity against total-α2AP and used for detection. With the novel ELISAs we determined Met(R6)-α2AP and Met(W6)-α2AP levels in plasma samples and we showed that Met(R6)-α2AP was converted faster into Asn-α2AP than Met(W6)-α2AP in a plasma milieu. In conclusion, we developed two specific ELISAs for Met(R6)-α2AP and Met(W6)-α2AP, respectively, in plasma. This will enable us to determine N-terminal heterogeneity of α2AP in plasma samples

    Proteolytic and genetic variation of the alpha-2-antiplasmin C-terminus in myocardial infarction

    No full text
    Alpha-2-antiplasmin (alpha 2AP) undergoes both N- and C-terminal cleavages, which significantly modify its activities. Compared with other Ser protease inhibitors (serpins), alpha 2AP contains an similar to 50-residue-extended C-terminus, which binds plasmin(ogen). We developed 2 new ELISAs to measure the antigen levels of free total alpha 2AP and free C-terminally intact alpha 2AP to investigate whether alpha 2AP antigen levels or alpha 2AP C-terminal cleavage were associated with myocardial infarction (MI) in 320 male MI survivors and 169 age-matched controls. Patients had 15.2% reduced total alpha 2AP antigen levels compared with controls (93.8 vs 110.6 U/dL, P <.001), with a 10.1-fold (95% confidence interval [CI]: 5.5-18.9) increased MI risk for levels in the 1st quartile compared with the 4th quartile. The percentage of C-terminal cleavage did not differ between patients and controls (38.7% and 38.1%, respectively, P = .44). In addition, all individuals were genotyped for the polymorphism Arg407Lys, which is located near the start of the extended C-terminus. Arg407Lys was not associated with alpha 2APC-terminal cleavage, total alpha 2AP antigen levels, or MI risk (odds ratios compared with Arg/Arg: Arg/Lys 0.74, 95% CI: 0.50-1.10; Lys/Lys 0.77, 95% CI: 0.31-1.92). Our data show that levels of free full-length alpha 2AP were decreased in MI, that the percentage of C-terminally cleaved alpha 2AP was unaltered, and that Arg407Lys did not influence alpha 2AP levels or MI risk. (Blood. 2011;117(24):6694-6701
    corecore