23 research outputs found

    Daily intake of antioxidants in relation to survival among adult patients diagnosed with malignant glioma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malignant glioma is a rare cancer with poor survival. The influence of diet and antioxidant intake on glioma survival is not well understood. The current study examines the association between antioxidant intake and survival after glioma diagnosis.</p> <p>Methods</p> <p>Adult patients diagnosed with malignant glioma during 1991-1994 and 1997-2001 were enrolled in a population-based study. Diagnosis was confirmed by review of pathology specimens. A modified food-frequency questionnaire interview was completed by each glioma patient or a designated proxy. Intake of each food item was converted to grams consumed/day. From this nutrient database, 16 antioxidants, calcium, a total antioxidant index and 3 macronutrients were available for survival analysis. Cox regression estimated mortality hazard ratios associated with each nutrient and the antioxidant index adjusting for potential confounders. Nutrient values were categorized into tertiles. Models were stratified by histology (Grades II, III, and IV) and conducted for all (including proxy) subjects and for a subset of self-reported subjects.</p> <p>Results</p> <p>Geometric mean values for 11 fat-soluble and 6 water-soluble individual antioxidants, antioxidant index and 3 macronutrients were virtually the same when comparing all cases (n = 748) to self-reported cases only (n = 450). For patients diagnosed with Grade II and Grade III histology, moderate (915.8-2118.3 mcg) intake of fat-soluble lycopene was associated with poorer survival when compared to low intake (0.0-914.8 mcg), for self-reported cases only. High intake of vitamin E and moderate/high intake of secoisolariciresinol among Grade III patients indicated greater survival for all cases. In Grade IV patients, moderate/high intake of cryptoxanthin and high intake of secoisolariciresinol were associated with poorer survival among all cases. Among Grade II patients, moderate intake of water-soluble folate was associated with greater survival for all cases; high intake of vitamin C and genistein and the highest level of the antioxidant index were associated with poorer survival for all cases.</p> <p>Conclusions</p> <p>The associations observed in our study suggest that the influence of some antioxidants on survival following a diagnosis of malignant glioma are inconsistent and vary by histology group. Further research in a large sample of glioma patients is needed to confirm/refute our results.</p

    The Regulation of MS-KIF18A Expression and Cross Talk with Estrogen Receptor

    Get PDF
    This study provides a novel view on the interactions between the MS-KIF18A, a kinesin protein, and estrogen receptor alpha (ERĪ±) which were studied in vivo and in vitro. Additionally, the regulation of MS-KIF18A expression by estrogen was investigated at the gene and protein levels. An association between recombinant proteins; ERĪ± and MS-KIF18A was demonstrated in vitro in a pull down assay. Such interactions were proven also for endogenous proteins in MBA-15 cells were detected prominently in the cytoplasm and are up-regulated by estrogen. Additionally, an association between these proteins and the transcription factor NF-ĪŗB was identified. MS-KIF18A mRNA expression was measured in vivo in relation to age and estrogen level in mice and rats models. A decrease in MS-KIF18A mRNA level was measured in old and in OVX-estrogen depleted rats as compared to young animals. The low MS-KIF18A mRNA expression in OVX rats was restored by estrogen treatment. We studied the regulation of MS-KIF18A transcription by estrogen using the luciferase reporter gene and chromatin immuno-percipitation (ChIP) assays. The luciferase reporter gene assay demonstrated an increase in MS-KIF18A promoter activity in response to 10āˆ’8 M estrogen and 10āˆ’7M ICI-182,780. Complimentary, the ChIP assay quantified the binding of ERĪ± and pcJun to the MS-KIF18A promoter that was enhanced in cells treated by estrogen and ICI-182,780. In addition, cells treated by estrogen expressed higher levels of MS-KIF18A mRNA and protein and the protein turnover in MBA-15 cells was accelerated. Presented data demonstrated that ERĪ± is a defined cargo of MS-KIF18A and added novel insight on the role of estrogen in regulation of MS-KIF18A expression both in vivo and in vitro

    ICF, An Immunodeficiency Syndrome: DNA Methyltransferase 3B Involvement, Chromosome Anomalies, and Gene Dysregulation

    Get PDF
    The immunodeficiency, centromeric region instability, and facial anomalies syndrome (ICF) is the only disease known to result from a mutated DNA methyltransferase gene, namely, DNMT3B. Characteristic of this recessive disease are decreases in serum immunoglobulins despite the presence of B cells and, in the juxtacentromeric heterochromatin of chromosomes 1 and 16, chromatin decondensation, distinctive rearrangements, and satellite DNA hypomethylation. Although DNMT3B is involved in specific associations with histone deacetylases, HP1, other DNMTs, chromatin remodelling proteins, condensin, and other nuclear proteins, it is probably the partial loss of catalytic activity that is responsible for the disease. In microarray experiments and real-time RT-PCR assays, we observed significant differences in RNA levels from ICF vs. control lymphoblasts for pro- and anti-apoptotic genes (BCL2L10, CASP1, and PTPN13); nitrous oxide, carbon monoxide, NF-ĪŗB, and TNFa signalling pathway genes (PRKCH, GUCY1A3, GUCY1B3, MAPK13; HMOX1, and MAP4K4); and transcription control genes (NR2F2 and SMARCA2). This gene dysregulation could contribute to the immunodeficiency and other symptoms of ICF and might result from the limited losses of DNA methylation although ICF-related promoter hypomethylation was not observed for six of the above examined genes. We propose that hypomethylation of satellite 2at1qh and 16qh might provoke this dysregulation gene expression by trans effects from altered sequestration of transcription factors, changes in nuclear architecture, or expression of noncoding RNAs

    The Protein Kinase C-Ī· Isoform Induces Proliferation in Glioblastoma Cell Lines Through an ERK/Elk-1 Pathway

    No full text
    Glioblastoma multiforme (GBM) is the highest grade of astrocytoma. GBM pathogenesis has been linked to receptor tyrosine kinases and kinases further down signal-transduction pathways ā€“ in particular, members of the protein kinase C (PKC) family. The expression and activity of various PKC isoforms are increased in malignant astrocytomas, but not in non-neoplastic astrocytes. This suggests that PKC activity contributes to tumor progression. The level of PKC-Ī· expressed correlates with the degree of phorbol-12-myristate-13-acetate (PMA)-induced proliferation of two glioblastoma cell lines, U-1242 MG and U-251 MG. Normally, U-1242 cells do not express PKC-Ī·, and PMA inhibits their proliferation. Conversely, PMA increases proliferation of U-1242 cells that are stably transfected with PKC-Ī· (U-1242-PKC-Ī·). PMA treatment also stimulates proliferation of U-251 cells, which express PKC-Ī·. Here, we determined that extracellular signal-regulated kinase (ERK) and Elk-1 are downstream targets of PKC-Ī·. Elk-1-mediated transcriptional activity correlates with the PKC-Ī·-mediated mitogenic response. Pretreatment of U-1242-PKC-Ī· cells with inhibitors of PKC or MAPK/ERK kinase (MEK) (bisindolyl maleimide (BIM) or U0126, respectively) blocked both PMA-induced Elk-1 transcriptional activity and PMA-stimulated proliferation. An overexpressed dominant-negative PKC-Ī· reduced the mitogenic response in U-251 cells, as did reduction of Elk-1 by small interfering RNA. Taken together, these results strongly suggest that PKC-Ī·-mediated glioblastoma proliferation involves MEK/mitogen-activated protein (MAP) kinase phosphorylation, activation of ERK and subsequently of Elk-1. Elk-1 target genes involved in GBM proliferative responses have yet to be identified
    corecore