883 research outputs found
Magnetic Properties of (VO)_2P_2O_7 from Frustrated Interchain Coupling
Neutron-scattering experiments on (VO)_2P_2O_7 reveal both a gapped magnon
dispersion and an unexpected, low-lying second mode. The proximity and
intensity of these modes suggest a frustrated coupling between the alternating
spin chains. We deduce the minimal model containing such a frustration, and
show that it gives an excellent account of the magnon dispersion, static
susceptibility and electron spin resonance absorption. We consider two-magnon
states which bind due to frustration, and demonstrate that these may provide a
consistent explanation for the second mode.Comment: RevTeX, 5 pages, 6 figures, compressed from first versio
Excitations in one-dimensional S=1/2 quantum antiferromagnets
The transition from dimerized to uniform phases is studied in terms of
spectral weights for spin chains using continuous unitary transformations
(CUTs). The spectral weights in the S=1 channel are computed perturbatively
around the limit of strong dimerization. We find that the spectral weight is
concentrated mainly in the subspaces with a small number of elementary triplets
(triplons), even for vanishing dimerization. So, besides spinons, triplons may
be used as elementary excitations in spin chains. We conclude that there is no
necessity to use fractional excitations in low-dimensional, undoped or doped
quantum antiferromagnets.Comment: 4 pages, 1 figure include
Optimized Dynamical Decoupling for Time Dependent Hamiltonians
The validity of optimized dynamical decoupling (DD) is extended to
analytically time dependent Hamiltonians. As long as an expansion in time is
possible the time dependence of the initial Hamiltonian does not affect the
efficiency of optimized dynamical decoupling (UDD, Uhrig DD). This extension
provides the analytic basis for (i) applying UDD to effective Hamiltonians in
time dependent reference frames, for instance in the interaction picture of
fast modes and for (ii) its application in hierarchical
DD schemes with pulses about two perpendicular axes in spin space. to
suppress general decoherence, i.e., longitudinal relaxation and dephasing.Comment: 5 pages, no figure
High Order Coherent Control Sequences of Finite-Width Pulses
The performance of sequences of designed pulses of finite length is
analyzed for a bath of spins and it is compared with that of sequences of
ideal, instantaneous pulses. The degree of the design of the pulse strongly
affects the performance of the sequences. Non-equidistant, adapted sequences of
pulses, which equal instantaneous ones up to , outperform
equidistant or concatenated sequences. Moreover, they do so at low energy cost
which grows only logarithmically with the number of pulses, in contrast to
standard pulses with linear growth.Comment: 6 pages, 5 figures, new figures, published versio
Thermodynamics of Adiabatically Loaded Cold Bosons in the Mott Insulating Phase of One-Dimensional Optical Lattices
In this work we give a consistent picture of the thermodynamic properties of
bosons in the Mott insulating phase when loaded adiabatically into
one-dimensional optical lattices. We find a crucial dependence of the
temperature in the optical lattice on the doping level of the Mott insulator.
In the undoped case, the temperature is of the order of the large onsite
Hubbard interaction. In contrast, at a finite doping level the temperature
jumps almost immediately to the order of the small hopping parameter. These two
situations are investigated on the one hand by considering limiting cases like
the atomic limit and the case of free fermions. On the other hand, they are
examined using a quasi-particle conserving continuous unitary transformation
extended by an approximate thermodynamics for hardcore particles.Comment: 10 pages, 6 figure
- …