120 research outputs found

    Highly Pathogenic Avian Influenza (HPAI H5Nx, Clade 2.3.4.4.b) in Poultry and Wild Birds in Sweden: Synopsis of the 2020-2021 Season

    Get PDF
    Simple Summary Highly pathogenic avian influenza is a virus-induced contagious disease that has killed a large number of poultry and wild birds in Europe in the recent decade and is an increasing problem worldwide. In the winter of 2020-2021, Sweden experienced its worst period to date when the disease was diagnosed on 15 commercial poultry farms and over 2.2 million birds died or were euthanised. The disease was also diagnosed in 130 wild birds and nine flocks of hobby, game or zoo birds between 1 October 2020 and 30 September 2021. The aim of this article was to describe the influenza situation in Sweden during this period and to add to the knowledge related to the alarming situation with highly pathogenic influenza in birds. The disease caused animal suffering and death in wild and domestic birds and incurred high costs due to losses and extensive measures to stop spread. The outbreak investigations, where contacts were traced and virus strains were compared, concluded that the virus was brought to poultry farms by wild birds in most cases. More research is needed to obtain knowledge on risk factors, biosecurity, and wild bird presence on poultry farms to prevent future disease outbreaks. Highly pathogenic avian influenza (HPAI, Gs/Gd lineage) was introduced to Europe in 2005 and has since caused numerous outbreaks in birds. The 2020-2021 season was the hitherto most devastating when considering bird numbers and duration in Europe. Surveillance data, virologic results and epidemiologic investigations from the 2020-2021 outbreaks in Sweden were analysed. Subtypes H5N8 and H5N5 were detected on 24 farms with poultry or other captive birds. In wild birds, subtypes H5N8, H5N5, H5N1, H5N4, H5Nx were detected in 130 out of 811 sampled birds. There was a spatiotemporal association between cases in wild birds and poultry. Based on phylogeny and epidemiology, most of the introductions of HPAI to commercial poultry were likely a result of indirect contact with wild birds. A definite route of introduction to poultry could not be established although some biosecurity breaches were observed. No spread between farms was identified but airborne spread between flocks on the same farm was suspected. Our findings exemplify the challenges posed by the continuously changing influenza viruses that seem to adapt to a broader species spectrum. This points to the importance of wild bird surveillance, compliance to biosecurity, and identification of risk factors for introduction on poultry farms

    On the realization of Symmetries in Quantum Mechanics

    Full text link
    The aim of this paper is to give a simple, geometric proof of Wigner's theorem on the realization of symmetries in quantum mechanics that clarifies its relation to projective geometry. Although several proofs exist already, it seems that the relevance of Wigner's theorem is not fully appreciated in general. It is Wigner's theorem which allows the use of linear realizations of symmetries and therefore guarantees that, in the end, quantum theory stays a linear theory. In the present paper, we take a strictly geometrical point of view in order to prove this theorem. It becomes apparent that Wigner's theorem is nothing else but a corollary of the fundamental theorem of projective geometry. In this sense, the proof presented here is simple, transparent and therefore accessible even to elementary treatments in quantum mechanics.Comment: 8 page

    Observations of C-Band Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate from the Hurricane Imaging Radiometer (HIRAD) during GRIP and HS3

    Get PDF
    HIRAD flew on high-altitude aircraft over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010, and at the time of this writing plans to fly over Atlantic tropical cyclones in September of 2012 as part of the Hurricane and Severe Storm Sentinel (HS3) mission. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP and HS3 campaigns will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the campaigns, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eye-wall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed

    Hurricane Imaging Radiometer (HIRAD) Observations of Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate During NASA's GRIP and HS3 Campaigns

    Get PDF
    HIRAD flew on high-altitude aircraft over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010, and plans to fly over Atlantic tropical cyclones in September of 2012 as part of the Hurricane and Severe Storm Sentinel (HS3) mission. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain spatial resolution of approximately 2 km, out to roughly 30 km each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. The physical retrieval technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP and HS3 campaigns will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the campaigns, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eye-wall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed

    Fission decay of the isoscalar giant quadrupole resonance in 24Mg

    Get PDF
    The 24Mg(ot, a') 12C+12C reaction was studied by measuring 12C fragments in coincidence with inelastically scattered a-particles at E,=120 MeV. Both 12C fragments were identified using the AE-E technique. The measured angular correlations indicate that the 12Cg~ + 12Cg S decay channel is dominated by decay of L = 2 strength, which yields an integrated fraction of 0.14% of the E2 EWSR strength in comparison with 22.2% of the E2 EWSR strength observed in singles inelastic a-scattering experiments in the same excitation energy region

    Community Support and Transition of Research to Operations for the Hurricane Weather Research and Forecasting Model

    Get PDF
    The Hurricane Weather Research and Forecasting Model (HWRF) is an operational model used to provide numerical guidance in support of tropical cyclone forecasting at the National Hurricane Center. HWRF is a complex multicomponent system, consisting of the Weather Research and Forecasting (WRF) atmospheric model coupled to the Princeton Ocean Model for Tropical Cyclones (POM-TC), a sophisticated initialization package including a data assimilation system and a set of postprocessing and vortex tracking tools. HWRF’s development is centralized at the Environmental Modeling Center of NOAA’s National Weather Service, but it incorporates contributions from a variety of scientists spread out over several governmental laboratories and academic institutions. This distributed development scenario poses significant challenges: a large number of scientists need to learn how to use the model, operational and research codes need to stay synchronized to avoid divergence, and promising new capabilities need to be tested for operational consideration. This article describes how the Developmental Testbed Center has engaged in the HWRF developmental cycle in the last three years and the services it provides to the community in using and developing HWRF

    The Hurricane Imaging Radiometer: Present and Future

    Get PDF
    The Hurricane Imaging Radiometer (HIRAD) is an airborne passive microwave radiometer designed to provide high resolution, wide swath imagery of surface wind speed in tropical cyclones from a low profile planar antenna with no mechanical scanning. Wind speed and rain rate images from HIRAD's first field campaign (GRIP, 2010) are presented here followed, by a discussion on the performance of the newly installed thermal control system during the 2012 HS3 campaign. The paper ends with a discussion on the next generation dual polarization HIRAD antenna (already designed) for a future system capable of measuring wind direction as well as wind speed

    Optimizing land use decision-making to sustain Brazilian agricultural profits, biodiversity and ecosystem services

    Get PDF
    AbstractDesigning landscapes that can meet human needs, while maintaining functioning ecosystems, is essential for long-term sustainability. To achieve this goal, we must better understand the trade-offs and thresholds in the provision of ecosystem services and economic returns. To this end, we integrate spatially explicit economic and biophysical models to jointly optimize agricultural profit (sugarcane production and cattle ranching), biodiversity (bird and mammal species), and freshwater quality (nitrogen, phosphorus, and sediment retention) in the Brazilian Cerrado. We generate efficiency frontiers to evaluate the economic and environmental trade-offs and map efficient combinations of agricultural land and natural habitat under varying service importance. To assess the potential impact of the Brazilian Forest Code (FC), a federal policy that aims to promote biodiversity and ecosystem services on private lands, we compare the frontiers with optimizations that mimic the habitat requirements in the region. We find significant opportunities to improve both economic and environmental outcomes relative to the current landscape. Substantial trade-offs between biodiversity and water quality exist when land use planning targets a single service, but these trade-offs can be minimized through multi-objective planning. We also detect non-linear profit-ecosystem services relationships that result in land use thresholds that coincide with the FC requirements. Further, we demonstrate that landscape-level planning can greatly improve the performance of the FC relative to traditional farm-level planning. These findings suggest that through joint planning for economic and environmental goals at a landscape-scale, Brazil's agricultural sector can expand production and meet regulatory requirements, while maintaining biodiversity and ecosystem service provision
    • …
    corecore