22 research outputs found

    GRB 991216 Joins the Jet Set: Discovery and Monitoring of its Optical Afterglow

    Get PDF
    The optical light curve of the energetic gamma-ray burst GRB 991216 is consistent with jet-like behavior in which a power-law decay steepens from t**(-1.22 +/- 0.04) at early times to t**(-1.53 +/- 0.05) in a gradual transition at around 2 d. The derivation of the late-time decay slope takes into account the constant contribution of a host or intervening galaxy which was measured 110 d after the event at R = 24.56 +/- 0.14, although the light curve deviates from a single power law whether or not a constant term is included. The early-time spectral energy distribution of the afterglow can be described as F_nu ~ nu**(-0.74 +/- 0.05) or flatter between optical and X-ray, which, together with the slow initial decay, is characteristic of standard adiabatic evolution in a uniformly dense medium. Assuming that a reported absorption-line redshift of 1.02 is correct, the apparent isotropic energy of 6.7 x 10**53 erg is reduced by a factor of ~ 200 in the jet model, and the initial half-opening angle is ~ 6 deg. GRB 991216 is the third good example of a jet-like afterglow (following GRB 990123 and GRB 990510), supporting a trend in which the apparently most energetic gamma-ray events have the narrowest collimation and a uniform ISM environment. This, plus the absence of evidence for supernovae associated with jet-like afterglows, suggests that these events may originate from a progenitor in which angular momentum plays an important role but a massive stellar envelope or wind does not, e.g., the coalescence of a compact binary.Comment: 19 pages, accepted by The Astrophysical Journa

    Gravitational Lensing

    Full text link
    Gravitational lensing has developed into one of the most powerful tools for the analysis of the dark universe. This review summarises the theory of gravitational lensing, its main current applications and representative results achieved so far. It has two parts. In the first, starting from the equation of geodesic deviation, the equations of thin and extended gravitational lensing are derived. In the second, gravitational lensing by stars and planets, galaxies, galaxy clusters and large-scale structures is discussed and summarised.Comment: Invited review article to appear in Classical and Quantum Gravity, 85 pages, 15 figure

    First Microlensing Events From The MEGA Survey Of M31

    Get PDF
    We present the first M31 candidate microlensing events from the Microlensing Exploration of the Galaxy and Andromeda (MEGA) survey. MEGA uses several telescopes to detect microlensing towards the nearby Andromeda galaxy, M31, in order to establish whether massive compact objects are a significant contribution to the mass budget of the dark halo of M31. The results presented here are based on observations with the Isaac Newton Telescope on La Palma, during the 1999/00 and 2000/01 observing seasons. In this data set, 14 variable sources consistent with microlensing have been detected, 12 of which are new and 2 have been reported previously by the POINT-AGAPE group. A preliminary analysis of the spatial and timescale distributions of the candidate events support their microlensing nature. We compare the spatial distributions of the candidate events and of long-period variable stars, assuming the chances of finding a long-period variable and a microlensing event are comparable. The spatial distribution of our candidate microlensing events is more far/near side asymmetric than expected from the detected long-period variable distribution. The current analysis is preliminary and the asymmetry not highly significant, but the spatial distribution of candidate microlenses is suggestive of the presence of a microlensing halo.Comment: revised version, 16 pages, 12 figures, submitted to Astronomy & Astrophysic
    corecore