252 research outputs found

    Accumulation and depletion layer thicknesses in organic field effect transistors

    Full text link
    We present a simple but powerful method to determine the thicknesses of the accumulation and depletion layers and the distribution curve of injected carriers in organic field effect transistors. The conductivity of organic semiconductors in thin film transistors was measured in-situ and continuously with a bottom contact configuration, as a function of film thickness at various gate voltages. Using this method, the thicknesses of the accumulation and depletion layers of pentacene were determined to be 0.9 nm (VG=-15 V) and 5 nm (VG=15 V).Comment: 3 pages, 4 figures, Jap. J. Appl. Phys. in pres

    Cloning and functional characterization of a fructan 1-exohydrolase (1-FEH) in edible burdock (Arctium lappa L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously reported on the variation of total fructooligosaccharides (FOS), total inulooligosaccharides (IOS) and inulin in the roots of burdock stored at different temperatures. During storage at 0°C, an increase of FOS as a result of the hydrolysis of inulin was observed. Moreover, we suggested that an increase of IOS would likely be due to the synthesis of the IOS by fructosyltransfer from 1-kestose to accumulated fructose and elongated fructose oligomers which can act as acceptors for fructan:fructan 1-fructosyltransferase (1-FFT). However, enzymes such as inulinase or fructan 1-exohydorolase (1-FEH) involved in inulin degradation in burdock roots are still not known. Here, we report the isolation and functional analysis of a gene encoding burdock 1-FEH.</p> <p>Results</p> <p>A cDNA, named <it>aleh1</it>, was obtained by the RACE method following PCR with degenerate primers designed based on amino-acid sequences of FEHs from other plants. The <it>aleh1 </it>encoded a polypeptide of 581 amino acids. The relative molecular mass and isoelectric point (<it>pI</it>) of the deduced polypeptide were calculated to be 65,666 and 4.86. A recombinant protein of <it>aleh1 </it>was produced in <it>Pichia pastoris</it>, and was purified by ion exchange chromatography with DEAE-Sepharose CL-6B, hydrophobic chromatography with Toyopearl HW55S and gel filtration chromatography with Toyopearl HW55S. Purified recombinant protein showed hydrolyzing activity against β-2, 1 type fructans such as 1-kestose, nystose, fructosylnystose and inulin. On the other hand, sucrose, neokestose, 6-kestose and high DP levan were poor substrates.</p> <p>The purified recombinant protein released fructose from sugars extracted from burdock roots. These results indicated that <it>aleh1 </it>encoded 1-FEH.</p

    Momentum-resolved resonant photoelectron spectroscopic study for 1T-TiSe2_2: Observation of negative q in the Fano resonance due to inter-atomic interaction in the valence band

    Full text link
    The remarkable properties of (1T-)TiSe2_2 among the transition metal dichalcogenides have attracted the attention of many researchers due to its peculiar behavior during the charge density wave (CDW) transition. Therefore, it is highly desirable to study its electronic structure down to the atomic orbitals. In the present research, we applied momentum-resolved resonant photoelectron spectroscopy to study TiSe2_2 at the Ti2p-Ti3d absorption edge by using a momentum microscope, which can simultaneously detect the electronic states in a wide (kx,ky)(k_x,k_y) range. We have also used constant initial state (CIS) spectroscopy and density functional theory (DFT) calculations to reveal the hybridization between the Ti3d and Se4p orbitals within the valence band at the Gamma point at room temperature. In addition, an interesting result comes from our analysis of the CIS spectrum for the energy band located at a binding energy of 2 eV at the M-point. This band, mainly composed of the Se4p orbital, exhibited a Fano line profile at the Ti2p edge, with a negative value of the parameter "qq". This is the first clear evidence of the inter-atomic interaction during the valence band photoelectron emission process. This behavior differs significantly from the standard resonant photoelectron emission, which usually involves intra-atomic interactions. It also differs from the multi-atom resonant photoelectron emission (MARPE) observed in the core-level photoelectron emission, as we focus on the photoelectron emission from the valence band in this research

    Ultrafast melting of charge-density wave fluctuations at room temperature in 1TTiSe2{1T-TiSe_2} monitored under non-equilibrium conditions

    Full text link
    We investigate the ultrafast lattice dynamics in 1TTiSe2{1T-TiSe_2} using femtosecond reflection pump-probe and pump-pump-probe techniques at room temperature. The time-domain signals and Fourier-transformed spectra show the A1gA_{1g} phonon mode at 5.9 THz. Moreover, we observe an additional mode at \approx 3 THz, corresponding to the charge-density wave (CDW) amplitude mode, which is generally visible below Tc200 _c \approx 200\ K. We argue that the emergence of the CDW amplitude mode at room temperature can be a consequence of fluctuations of order parameters, based on the additional experiment using the pump-pump-probe technique, which exhibited suppression of the AM signal within the ultrafast time scale of \sim 0.5 ps.Comment: 15 pages, 3 figures, Applied Physics Letters, in pres
    corecore