235 research outputs found

    Endothelial dysfunction, carotid artery plaque burden, and conventional exercise-induced myocardial ischemia as predictors of coronary artery disease prognosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While both flow-mediated vasodilation (FMD) in the brachial artery (BA), which measures endothelium-dependent vasodilatation, and intima-media thickness (IMT) in the carotid artery are correlated with the prognosis of coronary artery disease (CAD), it is not clear which modality is a better predictor of CAD. Furthermore, it has not been fully determined whether either of these modalities is superior to conventional ST-segment depression on exercise stress electrocardiogram (ECG) as a predictor. Thus, the goal of the present study was to compare the predictive value of FMD, IMT, and stress ECG for CAD prognosis.</p> <p>Methods and Results</p> <p>A total of 103 consecutive patients (62 ± 9 years old, 79 men) with clinically suspected CAD had FMD and nitroglycerin-induced dilation (NTG-D) in the BA, carotid artery IMT measurement using high-resolution ultrasound, and exercise treadmill testing. The 73 CAD patients and 30 normal coronary patients were followed for 50 ± 15 months. Fifteen patients had coronary events during this period (1 cardiac death, 2 non-fatal myocardial infarctions, 3 acute heart failures, and 9 unstable anginas). On Kaplan-Meier analysis, only FMD and stress ECG were significant predictors for cardiac events.</p> <p>Conclusion</p> <p>Brachial endothelial function as reflected by FMD and conventional exercise stress testing has comparable prognostic value, whereas carotid artery plaque burden appears to be less powerful for predicting future cardiac events.</p

    The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer

    Get PDF
    The contractile actin-myosin cytoskeleton provides much of the force required for numerous cellular activities such as motility, adhesion, cytokinesis and changes in morphology. Key elements that respond to various signal pathways are the myosin II regulatory light chains (MLC), which participate in actin-myosin contraction by modulating the ATPase activity and consequent contractile force generation mediated by myosin heavy chain heads. Considerable effort has focussed on the role of MLC kinases, and yet the contributions of the myotonic dystrophy-related Cdc42-binding kinases (MRCK) proteins in MLC phosphorylation and cytoskeleton regulation have not been well characterized. In contrast to the closely related ROCK1 and ROCK2 kinases that are regulated by the RhoA and RhoC GTPases, there is relatively little information about the CDC42-regulated MRCKα, MRCKβ and MRCKγ members of the AGC (PKA, PKG and PKC) kinase family. As well as differences in upstream activation pathways, MRCK and ROCK kinases apparently differ in the way that they spatially regulate MLC phosphorylation, which ultimately affects their influence on the organization and dynamics of the actin-myosin cytoskeleton. In this review, we will summarize the MRCK protein structures, expression patterns, small molecule inhibitors, biological functions and associations with human diseases such as cancer

    Pharmacological reversal of endothelin-1 mediated constriction of the spiral modiolar artery: a potential new treatment for sudden sensorineural hearing loss

    Get PDF
    BACKGROUND: Vasospasm of the spiral modiolar artery (SMA) may cause ischemic stroke of the inner ear. Endothelin-1 (ET-1) induces a strong, long-lasting constriction of the SMA by increasing contractile apparatus Ca(2+ )sensitivity via Rho-kinase. We therefore tested several Rho-kinase inhibitors and a cell-permeable analogue of cAMP (dbcAMP) for their ability to reverse ET-1-induced constriction and Ca(2+)-sensitization. METHODS: The present study employed SMA isolated from gerbil temporal bones. Ca(2+)sensitivity was evaluated by correlating vascular diameter and smooth muscle cell [Ca(2+)](i), measured by fluo-4-microfluorometry and videomicroscopy. RESULTS: The Rho-kinase inhibitors Y-27632, fasudil, and hydroxy-fasudil reversed ET-1-induced vasoconstriction with an IC(50 )of 3, 15, and 111 μmol/L, respectively. DbcAMP stimulated a dose-dependent vasodilation (Ec(50 )= 1 mmol/L) and a reduction of [Ca(2+)](i )(EC(50 )= 0.3 μmol/L) of ET-1-preconstricted vessels (1 nmol/L). Fasudil and dbcAMP both reversed the ET-1-induced increase in Ca(2+ )sensitivity. CONCLUSION: Rho-kinase inhibition and dbcAMP reversed ET-1-induced vasoconstriction and Ca(2+)-sensitization. Therefore, Rho-kinase inhibitors or cAMP modulators could possess promise as pharmacological tools for the treatment of ET-1-induced constriction, ischemic stroke and sudden hearing loss

    Involvement of RhoA-mediated Ca(2+ )sensitization in antigen-induced bronchial smooth muscle hyperresponsiveness in mice

    Get PDF
    BACKGROUND: It has recently been suggested that RhoA plays an important role in the enhancement of the Ca(2+ )sensitization of smooth muscle contraction. In the present study, a participation of RhoA-mediated Ca(2+ )sensitization in the augmented bronchial smooth muscle (BSM) contraction in a murine model of allergic asthma was examined. METHODS: Ovalbumin (OA)-sensitized BALB/c mice were repeatedly challenged with aerosolized OA and sacrificed 24 hours after the last antigen challenge. The contractility and RhoA protein expression of BSMs were measured by organ-bath technique and immunoblotting, respectively. RESULTS: Repeated OA challenge to sensitized mice caused a BSM hyperresponsiveness to acetylcholine (ACh), but not to high K(+)-depolarization. In α-toxin-permeabilized BSMs, ACh induced a Ca(2+ )sensitization of contraction, which is sensitive to Clostridium botulinum C3 exoenzyme, indicating that RhoA is implicated in this Ca(2+ )sensitization. Interestingly, the ACh-induced, RhoA-mediated Ca(2+ )sensitization was significantly augmented in permeabilized BSMs of OA-challenged mice. Moreover, protein expression of RhoA was significantly increased in the hyperresponsive BSMs. CONCLUSION: These findings suggest that the augmentation of Ca(2+ )sensitizing effect, probably via an up-regulation of RhoA protein, might be involved in the enhanced BSM contraction in antigen-induced airway hyperresponsiveness

    Flow mediated dilation of the brachial artery: an investigation of methods requiring further standardization

    Get PDF
    BACKGROUND: In order to establish a consistent method for brachial artery reactivity assessment, we analyzed commonly used approaches to the test and their effects on the magnitude and time-course of flow mediated dilation (FMD), and on test variability and repeatability. As a popular and noninvasive assessment of endothelial function, several different approaches have been employed to measure brachial artery reactivity with B-mode ultrasound. Despite some efforts, there remains a lack of defined normal values and large variability in measurement technique. METHODS: Twenty-six healthy volunteers underwent repeated brachial artery diameter measurements by B-mode ultrasound. Following baseline diameter recordings we assessed endothelium-dependent flow mediated dilation by inflating a blood pressure cuff either on the upper arm (proximal) or on the forearm (distal). RESULTS: Thirty-seven measures were performed using proximal occlusion and 25 with distal occlusion. Following proximal occlusion relative to distal occlusion, FMD was larger (16.2 ± 1.2% vs. 7.3 ± 0.9%, p < 0.0001) and elongated (107.2 s vs. 67.8 s, p = 0.0001). Measurement of the test repeatability showed that differences between the repeated measures were greater on average when the measurements were done using the proximal method as compared to the distal method (2.4%; 95% CI 0.5–4.3; p = 0.013). CONCLUSION: These findings suggest that forearm compression holds statistical advantages over upper arm compression. Added to documented physiological and practical reasons, we propose that future studies should use forearm compression in the assessment of endothelial function

    Hypersensitivity to Thromboxane Receptor Mediated Cerebral Vasomotion and CBF Oscillations during Acute NO-Deficiency in Rats

    Get PDF
    ), NO-deficiency is often associated with activation of thromboxane receptors (TP). In the present study we hypothesized that in the absence of NO, overactivation of the TP-receptor mediated cerebrovascular signaling pathway contributes to the development of vasomotion and CBF oscillations. synthesis by ozagrel (10 mg/kg iv.) attenuated it. In isolated MCAs U-46619 in a concentration of 100 nM, which induced weak and stable contraction under physiological conditions, evoked sustained vasomotion in the absence of NO, which effect could be completely reversed by inhibition of Rho-kinase by 10 µM Y-27632.These results suggest that hypersensitivity of the TP-receptor – Rho-kinase signaling pathway contributes to the development of low frequency cerebral vasomotion which may propagate to vasospasm in pathophysiological states associated with NO-deficiency

    ADP-Ribosylation Factor 6 Expression and Activation Are Reduced in Myometrium in Complicated Pregnancies

    Get PDF
    ARF6 (ADP-ribosylation factor 6) small GTP binding protein plays critical roles in actin cytoskeleton rearrangements and membrane trafficking, including internalisation of G protein coupled receptors (GPCR). ARF6 operates by cycling between GDP-bound (inactive) and GTP-bound (active) forms and is a potential regulator of GPCR-mediated uterine activity during pregnancy and labour. ARF6 contains very low intrinsic GTP binding activity and depends on GEFs (guanine nucleotide exchange factors) such as CYTH3 (cytohesin 3) to bind GTP. ARF6 and CYTH3 were originally cloned from human placenta, but there is no information on their expression in other reproductive tissues.The expression of ARF6, ARF1, and CYTH1-4 was investigated by measuring mRNA (using RT-PCR) and protein levels (using immunoblotting) in samples of myometrium obtained from non-pregnant women, and women with normal pregnancies, before or after the spontaneous onset of labour. We also analysed myometrial samples from women with spontaneous preterm labour and from women with complicated pregnancies requiring emergency preterm delivery. The GST)-effector pull down assay was used to study the presence of active ARF6 and ARF1 in all myometrial extracts.ARF6, ARF1 and CYTH3 but not CYTH1, CYTH2 and CYTH4 were expressed in all samples and the levels did not change with pregnancy or labour. However, ARF6 and CYTH3 but not ARF1 levels were significantly reduced in complicated pregnancies. The alterations in the expression of ARF6 and its GEF in human myometrium indicate a potential involvement of this signalling system in modulating the response of myometrial smooth muscle in complicated pregnancies. The levels of ARF6-GTP or ARF1-GTP did not change with pregnancy or labour but ARF6-GTP levels were significantly decreased in women with severe complications of pregnancy.We have demonstrated a functional ARF6 system in human myometrium and a correlation between ARF6 level and activity in uterine and abnormal pregnancy
    corecore