593 research outputs found

    Evaluation of a Novel Anti-Mucin 1 (MUC1) Antibody (PankoMab) as a Potential Diagnostic Tool in Human Ductal Breast Cancer; Comparison with Two Established Antibodies

    Get PDF
    Aim: PankoMab is a novel antibody that recognizes a tumor-specific epitope of Mucin 1 (MUC1). The aim of this study was the evaluation of PankoMab as a potential diagnostic tool and its comparison with two established antibodies against MUC1 in human ductal breast cancer. Materials and Methods: Breast carcinomas were obtained from 82 patients. MUC1 expression and hormone receptor status were determined by immunohistochemistry of paraffin-embedded material. Results: PankoMab revealed strong correlation to hormone receptor expression. DF3 showed no correlation with grading, lymph node involvement and/or estrogen receptor (ER) expression. In the subgroup of lymph node-positive and ER-negative tumors, we saw a significantly reduced DF3 staining in G3 tumors compared to G2 tumors. VU-4-H5 showed increased staining intensity in correlation with increased grading. In addition, we also identified a significantly higher expression of the VU-4-H5 epitope in lymph node-positive carcinomas compared to carcinomas without lymph node involvement. Conclusion: PankoMab revealed strong correlation to hormone receptor expression in ductal carcinoma of the breast. VU-4-H5 showed increased staining intensity in correlation with increased grading and lymph node involvement. PankoMab and VU-4-H5 staining could be a useful combination in ductal breast cancer prognosis by immunohistochemistry

    Effects of Progesterone and Its Antagonist Mifepristone on Progesterone Receptor A Expression in Human Umbilical Vein Endothelial Cells

    Get PDF
    Effects of female steroid hormones on endothelial cells are gaining increased importance due to several studies on the effects of hormonal treatment on cardiovascular risk. Recent data argue for an improvement of endothelium-derived relaxation and impaired vascular contraction by estradiol, whereas progesterone and testosterone might entail contrary effects. So far, gestagenic influence on endothelial cell physiology is poorly understood. Human umbilical vein endothelial cells (HUVECs) exposed to the female sex hormones estradiol and progesterone show expression of estrogen receptor-beta (ER beta) and progesterone receptor A (PR-A), and are negative for ER alpha and PR-B. The aim of this study was to analyze the expression and stimulation of PR-A and -B in HUVECs after stimulation with progesterone and PR antagonists that are commercially available. PR-B expression or upregulation was abrogated after application of progesterone or antagonists to HUVECs. Expression of PR-A could be significantly upregulated with progesterone and mifepristone. Unexpectedly, stimulation with the progesterone antagonist RU486 (mifepristone) was accomplished by an upregulation of PR-A expression in our study. We conclude that gestagenic effects on HUVECs independent of modulators are mediated via the PR-A. Copyright (C) 2009 S. Karger AG, Base

    Differential Expression of CRH, UCN, CRHR1 and CRHR2 in Eutopic and Ectopic Endometrium of Women with Endometriosis.

    Get PDF
    Endometriosis is considered as a benign aseptic inflammatory disease, characterised by the presence of ectopic endometrium-like tissue. Its symptoms (mostly pain and infertility) are reported as constant stressors. Corticotropin releasing hormone (CRH) and urocortin (UCN) are neuropeptides, strongly related to stress and inflammation. The effects of CRH and UCN are mediated through CRHR1 and CRHR2 receptors which are implicated in several reproductive functions acting as inflammatory components. However, the involvement of these molecules to endometriosis remains unknown. The aim of this study was to examine the expression of CRHR1 and CRHR2 in endometriotic sites and to compare the expression of CRHR1 and CRHR2 in eutopic endometrium of endometriotic women to that of healthy women. We further compared the expression of CRH, UCN, CRHR1 and CRHR2 in ectopic endometrium to that in eutopic endometrium of women with endometriosis. Endometrial biopsy specimens were taken from healthy women (10 patients) and endometrial and endometriotic biopsy specimens were taken from women with endometriosis (16 patients). Τhe expression of CRH, UCN, CRHR1, and CRHR2 was tested via RT-PCR, immunohistochemistry and Western blotting. This study shows for the first time that CRH and UCN receptor subtypes CRHR1β and CRHR2α are expressed in endometriotic sites and that they are more strongly expressed (p<0.01) in eutopic endometrium of women with endometriosis compared to healthy women endometrium at the mRNA and protein level. CRH, UCN, CRHR1 and CRHR2 mRNA were also more highly expressed in ectopic rather than eutopic endometrium (CRH, UCN, CRHR2α: p<0.01, CRHR1β: p<0.05) and protein (CRH and UCN: p<0.05, CRHR1 and CRHR2: p<0.01) in women with endometriosis. These data indicate that CRH and UCN might play an immunoregulatory role in endometriotic sites by affecting reproductive functions such as decidualization and implantation of women with endometriosis

    Oxidative stress stimulates alpha-tocopherol transfer protein in human trophoblast tumor cells BeWo

    Get PDF
    alpha-Tocopherol transfer protein (alpha-TTP) has been identified as the major intracellular transport protein for the antioxidant vitamin E (alpha-Tocopherol). Expression of alpha-TTP on the reproductive system has been described both in mouse uterus and lately in the human placenta. The aim of this study was to clarify if placental expression of alpha-TTP can be modified by substances causing oxidative reactions. The human choriocarcinoma cell line BeWo was, therefore, treated with two known pro-oxidants. alpha-TTP expression was determined with immunocytochemistry and evaluated by applying a semiquantitative score. The presence of pro-oxidants in BeWo cells induced alpha-TTP expression. We thus hypothesize that stimulation of alpha-TTP expression by oxidative stress, as this was induced by pro-oxidants, could be part of an antioxidant process occurring in the placenta in the aim of enhancing the supply of alpha-Tocopherol. This process could occur both in normal pregnancies, as well as in pregnancy disorders presented with intensified oxidative stress. In that view, this model is proposed for further oxidative stress studies on trophoblast and placenta, on the grounds of clarifying the role of alpha-Tocopherol in pregnancy physiology and pathophysiology

    Analysis of Epithelial Growth Factor-Receptor (EGFR) Phosphorylation in Uterine Smooth Muscle Tumors

    Get PDF
    Uterine fibroids are the commonest uterine benign tumors. A potential mechanism of malignant transformation from leiomyomas to leiomyosarcomas has beendescribed. Tyrosine phosphorylation is a key mechanism that controls biological functions, such as proliferation and cell differentiation. The aim of the current study was to evaluate the phosphorylation of epithelial growth factor-receptor (EGFR) in normal myometrium, uterine myomas and uterine leiomyosarcomas. Formalin-fixed paraffin-embedded tissue samples from normal myometrium, leiomyomas and leiomyosarcomas were studied. Samples were immunohistochemically (IHC) assessed using the anti-EGFR phosphorylation of Y845 (pEGFR-Y845) and anti-pEGFR-Y1173 phosphorylation-specific antibodies. IHC staining was evaluated using a semiquantitative score. The expression of pEGFR-Y845 was significantly upregulated in leiomyosarcomas (p < 0.001) compared to leiomyomas and normal myometrium. In contrast, pEGFR-Y1173 did not differ significantly between the three groups of the study. Correlation analysis revealed an overall positive correlation between pEGFR Y845 and mucin 1 (MUC1). Further subgroup analysis within the tumoral group (myomas and leiomyosarcomas) revealed an additional negative correlation between pEGFR Y845 and galectin-3 (gal-3) staining. On the contrary no significant correlation was noted within the non-tumoral group. An upregulated EGFR phosphorylation of Y845 in leiomyosarcomas compared to leiomyomas implicates EGFR activation at this special receptor site. Due to these pEGFR-Y845 variations, it can be postulated that MUC1 interacts with it, whereas gal-3 seems to be cleaved from Y845 phosphorylated EGFR. Further research on this field could focus on differences in EGFR pathways as a potentially advantageous diagnostic tool for investigation of benign and malignant signal transduction processes

    Human amniotic fluid glycoproteins expressing sialyl Lewis carbohydrate antigens stimulate progesterone production in human trophoblasts in vitro

    Get PDF
    Background: Progesterone is thought to mediate immune modulator effects by regulating uterine responsiveness. The aim of the study was to clarify the effect of transferrin and glycodelin A (former name PP14) as sialyl Lewis X-expressing glycoproteins on the release of progesterone by trophoblast cells in vitro. Methods: Cytotrophoblast cells were prepared from human term placentas by standard dispersion of villous tissue followed by a Percoll gradient centrifugation step. Trophoblasts were incubated with varying concentrations (50-300 mug/ml) of human amniotic fluid- and serum-transferrin as well as with glycodelin A. Culture supernatants were assayed for progesterone, human chorionic gonadotropin (hCG) and cortisol by enzyme immunometric methods. Results: The release of progesterone is increased in amniotic fluid transferrin- and glycodelin A-treated trophoblast cell cultures compared to untreated trophoblast cells. There is no relation between transferrin and the hCG or cortisol production of trophoblast cells. Conclusion: The results suggest that sialyl Lewis carbohydrate antigen-expressing amniotic fluid glycoproteins modulate the endocrine function of trophoblasts in culture by upregulating progesterone production. Copyright (C) 2004 S. Karger AG, Basel

    The role of glycosylation in breast cancer metastasis and cancer control

    Get PDF
    Glycosylation and its correlation to the formation of remote metastasis in breast cancer had been an important scientific topic in the last 25 years. With the development of new analytical techniques, new insights were gained on the mechanisms underlying metastasis formation and the role of aberrant glycosylation within. Mucin-1 and Galectin were recognized as key players in glycosylation. Interestingly, aberrant carbohydrate structures seem to support the development of brain metastasis in breast cancer patients, as changes in glycosylation structures facilitate an overcoming of blood brain barrier. Changes in the gene expression of glycosyltransferases are the leading cause for a modification of carbohydrate chains, so that also altered gene expression plays a role for glycosylation. In consequence, glycosylation and changes within can be useful for cancer diagnosis, determination of tumor stage, and prognosis, but can as well be targets for therapeutic strategies. Thus, further research on this topic would worthwhile for cancer combating

    The Significance of Epithelial-to-Mesenchymal Transition for Circulating Tumor Cells

    Get PDF
    Epithelial to mesenchymal transition (EMT) is a process involved in embryonic development, but it also plays a role in remote metastasis formation in tumor diseases. During this process cells lose their epithelial features and adopt characteristics of mesenchymal cells. Thereby single tumor cells, which dissolve from the primary tumor, are enabled to invade the blood vessels and travel throughout the body as so called "circulating tumor cells" (CTCs). After leaving the blood stream the reverse process of EMT, the mesenchymal to epithelial transition (MET) helps the cells to seed in different tissues, thereby generating the bud of metastasis formation. As metastasis is the main reason for tumor-associated death, CTCs and the EMT process are in the focus of research in recent years. This review summarizes what was already found out about the molecular mechanisms driving EMT, the consequences of EMT for tumor cell detection, and suitable markers for the detection of CTCs which underwent EMT. The research work done in this field could open new roads towards combating cancer

    HLA-G - evolvement from a trophoblast specific marker to a checkpoint molecule in cancer, a narrative review about the specific role in breast- and gynecological cancer

    Get PDF
    Human leukocyte antigen G (HLA-G) is known as a non-classical molecule of the major histocompatibility complex class Ib and downregulates the mother's immune response against the fetus during pregnancy, thereby generating immune tolerance. Due to the latter effect, HLA-G is also referred to as an immune checkpoint molecule. Originally identified on extravillous trophoblasts, HLA-G is already known to induce immune tolerance at various stages of the immune response, for example through cell differentiation and proliferation, cytolysis and cytokine secretion. Because of these functions, HLA-G is involved in various processes of cancer progression, but a comprehensive review of the role of HLA-G in gynecologic cancers is lacking. Therefore, this review focuses on the existing knowledge of HLA-G in ovarian cancer, endometrial cancer, cervical cancer and breast cancer. HLA-G is predominantly expressed in cancer tissues adjacent to the extravillous trophoblast. Therefore, modulating its expression in the cancer target tissues of cancer patients could be a potential therapeutic approach to treat these diseases
    corecore