5 research outputs found
AD-linked R47H-TREM2 mutation induces disease-enhancing microglial states via AKT hyperactivation
The hemizygous R47H variant of triggering receptor expressed on myeloid cells 2 (TREM2), a microglia-specific gene in the brain, increases risk for late-onset Alzheimer’s disease (AD). Using transcriptomic analysis of single nuclei from brain tissues of patients with AD carrying the R47H mutation or the common variant (CV)–TREM2, we found that R47H-associated microglial subpopulations had enhanced inflammatory signatures reminiscent of previously identified disease-associated microglia (DAM) and hyperactivation of AKT, one of the signaling pathways downstream of TREM2. We established a tauopathy mouse model with heterozygous knock-in of the human TREM2 with the R47H mutation or CV and found that R47H induced and exacerbated TAU-mediated spatial memory deficits in female mice. Single-cell transcriptomic analysis of microglia from these mice also revealed transcriptomic changes induced by R47H that had substantial overlaps with R47H microglia in human AD brains, including robust increases in proinflammatory cytokines, activation of AKT signaling, and elevation of a subset of DAM signatures. Pharmacological AKT inhibition with MK-2206 largely reversed the enhanced inflammatory signatures in primary R47H microglia treated with TAU fibrils. In R47H heterozygous tauopathy mice, MK-2206 treatment abolished a tauopathy-dependent microglial subcluster and rescued tauopathy-induced synapse loss. By uncovering disease-enhancing mechanisms of the R47H mutation conserved in human and mouse, our study supports inhibitors of AKT signaling as a microglial modulating strategy to treat AD
Recommended from our members
Exosomes regulate microglia activation during inflammation and aging
Proper regulation of inflammatory responses is critical for effective microglia function in physiology and disease. While much emphasis is placed on mechanisms driving microglia activation, there remains a gap in knowledge on how microglia resolve or modulate inflammatory activation. Here we provide a comprehensive analysis of exosome regulation of microglia inflammatory response, highlighting a novel anti-inflammatory function of exosomes. First, microglia-derived exosomes contain immune molecules that are sufficient to propagate signals driving transcriptional changes associated with increased inflammatory cytokine production and phagocytic clearance in recipient microglia. Secondly, microglia with impaired exosome biogenesis display altered inflammatory kinetics, characterized by exaggerated and prolonged expression of pro-inflammatory molecules in response to acute and chronic aging-associated inflammation. This robust anti-inflammatory function of exosomes is manifested in part through the release of proinflammatory microRNAs, such miR-155. Taken together, our study identifies exosomes as critical mediators of inflammatory communication in the brain that play important roles in intracellular resolution of microglia inflammation
Recommended from our members
Microglial microRNAs mediate sex-specific responses to tau pathology.
Sex is a key modifier of neurological disease outcomes. Microglia are implicated in neurological diseases and modulated by microRNAs, but it is unknown whether microglial microRNAs have sex-specific influences on disease. We show in mice that microglial microRNA expression differs in males and females and that loss of microRNAs leads to sex-specific changes in the microglial transcriptome and tau pathology. These findings suggest that microglial microRNAs influence tau pathogenesis in a sex-specific manner
Microglial microRNAs mediate sex-specific responses to tau pathology.
Sex is a key modifier of neurological disease outcomes. Microglia are implicated in neurological diseases and modulated by microRNAs, but it is unknown whether microglial microRNAs have sex-specific influences on disease. We show in mice that microglial microRNA expression differs in males and females and that loss of microRNAs leads to sex-specific changes in the microglial transcriptome and tau pathology. These findings suggest that microglial microRNAs influence tau pathogenesis in a sex-specific manner
A CRISPRi/a platform in human iPSC-derived microglia uncovers regulators of disease states.
Microglia are emerging as key drivers of neurological diseases. However, we lack a systematic understanding of the underlying mechanisms. Here, we present a screening platform to systematically elucidate functional consequences of genetic perturbations in human induced pluripotent stem cell-derived microglia. We developed an efficient 8-day protocol for the generation of microglia-like cells based on the inducible expression of six transcription factors. We established inducible CRISPR interference and activation in this system and conducted three screens targeting the 'druggable genome'. These screens uncovered genes controlling microglia survival, activation and phagocytosis, including neurodegeneration-associated genes. A screen with single-cell RNA sequencing as the readout revealed that these microglia adopt a spectrum of states mirroring those observed in human brains and identified regulators of these states. A disease-associated state characterized by osteopontin (SPP1) expression was selectively depleted by colony-stimulating factor-1 (CSF1R) inhibition. Thus, our platform can systematically uncover regulators of microglial states, enabling their functional characterization and therapeutic targeting