5 research outputs found

    Two-Layered Pulsatile Blood Flow in a Stenosed Artery with Body Acceleration and Slip at Wall

    Get PDF
    Pulsatile flow of blood through an artery in presence of a mild stenosis has been investigated in this paper assuming the body fluid blood as a two-fluid model with the suspension of all the erythrocytes in the core region as Bingham Plastic and the peripheral region of plasma as a Newtonian fluid. This model has been used to study the influence of body acceleration, non- Newtonian nature of blood and a velocity slip at wall, in blood flow through stenosed arteries. By employing a perturbation analysis, analytic expressions for the velocity profile, Plug-core radius, flow rate, wall shear stress and effective viscosity, are derived. The variations of flow variables with different parameters are shown diagrammatically and discussed. It is noticed that velocity and flow rate increase but effective viscosity decreases, due to a wall slip. Flow rates and speed are enhanced further due to the influence of body acceleration

    Pulsatile Flow of Blood in a Constricted Artery with Body Acceleration

    Get PDF
    Pulsatile flow of blood through a uniform artery in the presence of a mild stenosis has been investigated in this paper. Blood has been represented by a Newtonian fluid. This model has been used to study the influence of body acceleration and a velocity slip at wall, in blood flow through stenosed arteries. By employing a perturbation analysis, analytic expressions for the velocity profile, flow rate, wall shear stress and effective viscosity, are derived. The variations of flow variables with different parameters are shown diagrammatically and discussed. It is noticed that velocity and flow rate increase but effective viscosity decreases, due to a wall slip. Flow rate and speed enhance further due to the influence of body acceleration. Biological implications of this modeling are briefly discussed

    On Nil-Symmetric Rings

    No full text
    The concept of nil-symmetric rings has been introduced as a generalization of symmetric rings and a particular case of nil-semicommutative rings. A ring R is called right (left) nil-symmetric if, for a,b,c∈R, where a,b are nilpotent elements, abc=0  (cab=0) implies acb=0. A ring is called nil-symmetric if it is both right and left nil-symmetric. It has been shown that the polynomial ring over a nil-symmetric ring may not be a right or a left nil-symmetric ring. Further, it is also proved that if R is right (left) nil-symmetric, then the polynomial ring R[x] is a nil-Armendariz ring

    Abstracts of National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020

    No full text
    This book presents the abstracts of the papers presented to the Online National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020 (RDMPMC-2020) held on 26th and 27th August 2020 organized by the Department of Metallurgical and Materials Science in Association with the Department of Production and Industrial Engineering, National Institute of Technology Jamshedpur, Jharkhand, India. Conference Title: National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020Conference Acronym: RDMPMC-2020Conference Date: 26–27 August 2020Conference Location: Online (Virtual Mode)Conference Organizer: Department of Metallurgical and Materials Engineering, National Institute of Technology JamshedpurCo-organizer: Department of Production and Industrial Engineering, National Institute of Technology Jamshedpur, Jharkhand, IndiaConference Sponsor: TEQIP-
    corecore