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Abstract 
  
Pulsatile flow of blood through a uniform artery in the presence of a mild stenosis has been 
investigated in this paper. Blood has been represented by a Newtonian fluid. This model has 
been used to study the influence of body acceleration and a velocity slip at wall, in blood 
flow through stenosed arteries. By employing a perturbation analysis, analytic expressions for 
the velocity profile, flow rate, wall shear stress and effective viscosity, are derived. The 
variations of flow variables with different parameters are shown diagrammatically and 
discussed. It is noticed that velocity and flow rate increase but effective viscosity decreases, 
due to a wall slip. Flow rate and speed enhance further due to the influence of body 
acceleration. Biological implications of this modeling are briefly discussed.  
 
Keywords: Pulsatile flow, Velocity-slip, Body acceleration, Newtonian fluid, Stenosis 
 
MSC 2000 No.: 76Z05, 74G10 
 
 

1. Introduction 

 
An abnormal growth, formed due to deposits of atherosclerotic plaques in the lumen of an 
artery, is called stenosis (atherosclerosis) and, its subsequent and severe growth on the artery 
wall, results in serious circulatory disorders [Young (1979), Biswas (2000), Bali and Awasthi 
(2007)]. These disorders in circulatory systems may be included as, narrowing in body 
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passage leading to the reduction and impediment to blood flow in the constricted artery 
regions, the blockage of the artery in making the flow irregular and causing an abnormality of 
the blood flow and, the presence of stenosis at one or more of the major blood vessels, 
carrying blood to the heart or brain etc., could lead to various arterial diseases e.g., 
myocardial infarction, angina pectoris, cerebral accident, coronary thrombosis, strokes etc. 
[Young, (1968), Chakraborty et al. (1995), Biswas (2000), Sankar and Lee (2009)]. There is a 
good amount of evidence that hydrodynamic factors could play an important role in the 
formation, development and progression of an arterial stenosis [Young and Tsai (1973), 
Biswas (2000)]. Further, a good many researchers viz., Dintenfass (1977), Chien (1981), 
Caro (1981), Biswas (2000) have already reported that the rheological and fluid dynamic 
properties of blood and its flow could play a vital role in the fundamental understanding, 
diagnosis and treatment of many cardiovascular, cerebrovascular and arterial diseases. As 
rheological properties and flow behavior of blood are of immense importance in the 
fundamental study of different diseases in general and arterial stenosis in particular, many 
authors have proposed theoretical models [Forrester and Young (1970), Morgan and Young 
(1979), McDonald (1979), Misra and Chakraborty (1986)] and experimental work [Young 
and Tsai (1973)] for blood flow through stenosed arteries.  
 
In the above theoretical models, different aspects of blood flow through stenosed arteries are 
studied, by considering blood in behaving like a Newtonian fluid (Schlichting and Gersten 
(2004)). Young (1968) has analyzed theoretically the effects of stenosis on flow 
characteristics of blood and, concluded that the resistance to flow (impedance) and the wall 
shear stress, increase with the increase in stenosis size. Forrester and Young (1970) extended 
the theory of Young (1968), to include the effects of flow separation on a mild constriction. 
Results of experimental work on models of an arterial stenosis have been presented by Young 
and Tsai (1973).  
 
Sankar and Lee (2009) have reported that the study of blood flow through stenosed arteries is 
very important as because, the cause and development of many arterial diseases leading to the 
malfunction of cardiovascular system, are to a great extent related to the flow characteristics 
of blood. Although, blood exhibits a non-Newtonian character at low shear rates [Merrill 
(1965)], at high shear rates generally found in larger arteries [diameter nearly above 1mm), 
blood behaves like a Newtonian fluid (Taylor (1959)]. Since, stenosis normally generates and 
develops in large diameter arteries (in the range of 500 to 2000 μm), where blood shows a 
Newtonian behavior, it appears to be reasonable in assuming blood to be homogeneous, 
isotropic, incompressible, Newtonian continuum, having a constant viscosity and density for 
flow though stenosed arteries (having respective radii 10.0, 5.0, 4.0 and 1.5mm in aorta, 
femoral, carotid and coronary arteries [Sud and Sekhon (1985)].  
 
The flow of blood in arteries is pulsatile due to the heart pulse pressure gradient and the 
pulsatile flow (caused by the periodic disturbance) of blood through an artery, has already 
drawn a considerable attention to the researchers for quite a long time [Womersley (1955), 
Chandra and Krishna Prasad (1994), Sankar and Lee (2009)], owing to its great importance in 
medical science. It is also reported that arterial blood flow is highly pulsatile with marked 
effects on instantaneous velocity distribution and the flow rate varies over a wide range 
during a flow cycle [Liepsch (1986), Sud and Sekhon (1984), Sud and Sekhon (1987)].  
 
Several other studies include, pulsatile blood flow in a rigid elliptic tube with varying cross-
section [Mehrotra et al. (1985)], inside an artery with time-dependent stenosis [Misra et al. 
(2008)] and through a mild stenosed artery [Nagarani and Sarojamma (2008), Sankar and Lee 

2

Applications and Applied Mathematics: An International Journal (AAM), Vol. 4 [2009], Iss. 2, Art. 8

https://digitalcommons.pvamu.edu/aam/vol4/iss2/8



AAM: Intern. J., Vol. 4, Issue 2 (December 2009) [Previously, Vol. 4, No. 2]                                                331 

 

(2009)]. However, under some exceptional circumstances, e.g., while riding in or driving a 
heavy vehicle (tractor or tank in particular), while flying in a spacecraft or a helicopter, in 
particular while landing and taking-off, operating jack hammers, athletes and sportsmen, 
taking their fast and sudden action etc., human body is subjected to whole-body accelerations 
(or vibrations), intentional or unintentional. In all such cases, our body is subjected to an 
external acceleration. Though, human body can adapt to changes but prolonged exposures to 
such accelerations, may lead to many health problems like, headache, joint pain, vascular 
disorders, abdominal pain, loss of vision, increased pulse rate etc. [Burton et al. (1974)].  
 
To study the influence of such acceleration, Sud and Sekhon (1987) have presented a 
mathematical model of laminar and uni-directional blood flow in a stenosed artery, subject to 
periodic body acceleration.  The effect of body acceleration on unsteady flow of blood 
through a stenosed artery by applying a finite difference scheme is modeled by Mandal et al. 
(2007). In most of the aforementioned studies, traditional no-slip boundary condition 
[Schlichting and Gersten (2004)] has been employed. However, a number of studies of 
suspensions in general and blood flow in particular both theoretical [Vand (1948), Jones 
(1966), Nubar (1967), Brunn (1975), Chaturani and Biswas (1984), Biswas (2000)] and 
experimental [Bennet (1967), Bugliarello and Hayden (1962)], have suggested the likely 
presence of slip (a velocity discontinuity) at the flow boundaries (or in their immediate 
neighborhood). The apparent (effective) viscosity will be lowered, as a result of wall slip 
[Brunn (1975), Biswas (2000)].  
 
Recently, Misra and Shit (2007) and Ponalgusamy (2007) have developed mathematical 
models for blood flow through stenosed arterial segment, by taking a velocity slip condition 
at the constricted wall. Thus, it seems that consideration of a velocity slip at the stenosed 
vessel wall will be quite rational, in blood flow modeling. The intent of the present analysis is 
to study the effects of slip (at the stenotic wall) and the influence of body acceleration, on the 
flow variables (wall shear stress, velocity profiles, flow rate and effective viscosity) for 
pulsatile blood (Newtonian fluid) flow through a stenosed vessel. 
 
2.  Mathematical Formulation    
 
Consider a pulsatile, axially symmetric, laminar, one-dimensional and fully developed flow 
of blood through an artery (circular tube) with a mild stenosis (constriction), as shown in 
Figure 1. The constricted wall of this artery is assumed to be rigid. The geometry of an 
arterial stenosis (Figure 1) is mathematically modeled as [Nagarani and Sarojamma (2008)] 
 

0 0
0

0 0

1 cos ,  for              
2( )

,                              for  ,

s z
R z z

zR z

R z z

   
    

  
 

                                          (1) 

 

where ( )R z  is the radius of the artery in the stenotic region, 0R  is the constant radius of the 

normal artery in the non-stenotic region, 0z  is the half-length of the stenosis and s is the 

maximum height of the stenosis such that 
0

1s

R


 (mild stenosis). It has been reported that the 

radial velocity being negligibly small can be neglected for a low Reynolds number in case of 
a tube embedded with a mild stenosis [Nagarani and Sarojamma (2008), Sankar and Lee 
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(2009)]. The Navier-Stokes equations of motion in cylindrical coordinate system  , ,r z  

governing the fluid flow are given by [Schlichting and Gersten (2004)] 
 

   1u p
r F t

t z r r
   

   
  

                          (2) 

0,
p

r





                              (3) 

 
where u represents the axial velocity along z -direction, p  the pressure,   the density, t  

the time,   the shear stress and  F t  the body acceleration. The constitutive equation of a 

Newtonian fluid (blood) can be written as 
 

,
u

r
  
 


                                                       (4) 

 
where  is the shear viscosity of blood. 
 
The boundary conditions are 
 
 (i)  at ( )su u r R z                                (5) 

 (ii) =0 at 0
u

r
r





                                         (6) 

 
where su  is the slip velocity at the stenotic wall [Chaturani and Biswas (1984)]. 

 
Since, the pressure gradient is a function of z and t , we take 
 

   0 1, cos ,  0,p

p
z t A A t t

z


   


                 (7) 

 
where, 0A  is the steady state pressure gradient, 1A is amplitude of the fluctuating component, 

2p pf   and pf is the pulse rate frequency. Both 0A and 1A are functions of z  [Nagarani 

and Sarojamma (2008)]. For 0t  , the flow is subjected to a periodic body acceleration 

 F t which has been expressed as [Nagarani and Sarojamma (2008), Sud and Sekhon 

(1985)] 
  

   0 cos ,  0bF t a t t    ,                 (8) 

 
where 2b bf  ,  bf  and 0a  are frequency in Hz and amplitude of body acceleration,   is 

the lead angle with respect to the heart action. The frequency of body acceleration bf  is 

assumed to be so small that wave effect can be neglected [Nagarani and Sarojamma (2008)].  
 
In order to express, the governing equations of motion and conditions employed, 
dimensionless and, also to study the behavior of flow variables, we introduce the following 
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non-dimensional variables (as obtained with the help of characteristic quantities 

0 0 1, ,R A A etc.) we introduce the following non dimensional variables 

  

 
0 0 0

( )
,  ,  ,  p

z R z r
z R z r t t

R R R
    , b

p




 ,  s 2
0 0 0

,  

4

s u
u

R A R





  ,  

2
0 0

4

s
s

u
u

A R



 ,
2

2 0

0 0

,  

2

R

A R

 


  , 1

0

A
e

A
 ,   0

0

a
B

A
 ,                          (9) 

 
where  is the pulsatile Reynolds number or generalized Womersley frequency parameter. 
Using non-dimensional variables as enlisted in equation (9), the basic equations (2) and (4) 
reduce to the following forms  
 

     2 2
4 1 cos 4 cos

u
e t B t r

t r r
    

    
 

,                 (10) 

1

2

u

r
 
 


.                   (11) 

 
Inserting the expression for   from equation (11), in equation (10), we get 
 

   2 1
4 1 cos 4 cos .

u u
e t B t r

t r r r
              

                   (12) 

 
The boundary conditions (5) and (6), in the dimensionless form are 
  

 at ( )su u r R z  ,                                        (13) 

=0 at 0
u

r
r





.                              (14) 

 
The geometry of an arterial stenosis in dimensionless form is given by 
 

0
0

0

1 1 cos ,   for       ,            
2( )

1,                                for      .

s z
z z

zR z

z z

   
    

   
 

                                   (15) 

 
The non-dimensional volumetric flow rate  ,Q z t can be defined as 

 

   
 

0

, 4 , ,
R z

Q z t ru z r t dr  ,                             (16) 
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where    
 4

0 0

,
,

8

Q z t
Q z t

R A



 ,  ,Q z t
 
is the volumetric flow rate. 

 
The effective viscosity e  defined as 

 

  4

( , )e

p
R z

z
Q z t




     [Pennington and Cowin (1970)]                                    (17) 

 
can be expressed in dimensionless form as 

  
   

4

1 cos ,
,e

R z
e t

Q z t
                  (18)  

 
where  ,Q z t is defined in equation (16).  

 
 
3.  Method of Solution 
 
Considering the Womersley parameter to be small, the velocity u  can be expressed in the 
following form 
 

     2
0 1, , , , , , .u z r t u z r t u z r t                         (19)  

 
Substituting the expression of u  from equation (19) in (12), we have 
 

    0 4 1 cos cos
u

r r e t B t
r r

           
,                    (20) 

0 11u u
r

t r r r

        
.                          (21) 

 
Substituting u  from equation (19) into conditions (13) and (14) we get 
 

 0 1, 0 at su u u r R z   ,               (22) 

0 10, 0  at 0
u u

r
r r

 
  

 
.               (23)  

 
To determine 0u  and 1u , we integrate equations (20) and (21) twice with respect to r and use 

the boundary conditions (22) and (23) (for 1u , using the expression obtained for 0u ), we have 

 

     2 2
0 su u f t R z r   ,                                        (24) 

6

Applications and Applied Mathematics: An International Journal (AAM), Vol. 4 [2009], Iss. 2, Art. 8

https://digitalcommons.pvamu.edu/aam/vol4/iss2/8



AAM: Intern. J., Vol. 4, Issue 2 (December 2009) [Previously, Vol. 4, No. 2]                                                335 

 

 
where       1 cos cosf t e t B t     and 

  

        2 42 4
1

1
' 4 3

16
u f t R z r R z r   .                                                   (25) 

 
Neglecting terms of  4o  and other higher powers of , the expression for axial velocity 

 , ,u r z t  as obtained from equations (19), (24) and (25), is 

       

              
2

2 2 42 2 4( , , ) ' 4 3
16su z r t u f t R z r f t R z r R z r


      , 

          0 ,  0 ,  0.z z r R z t      (26)  

 
The wall shear stress w  (as a result of equations (11) and (19)) becomes 

 

 

20 11
,

2w
r R z

u u

r r
 



       
                  (27) 

 
which is determined, by substituting velocity expressions (24) and (25) into the above 
equation (27), in the form 
 

        
2

3
'

8w f t R z f t R z
   .                                       (28)  

 
The expression for volumetric flow rate  ,Q z t , as a consequence of equations (16) and (26) 

becomes 
 

              
2

2 2 4
, 2 '

6sQ z t R z u f t R z f t R z
 

   
 

.                                        (29) 

 
Analytic expression for effective viscosity e , as obtained from equations (18) and (29) is 

given by 
 

              
12

2 2 4
1 cos 2 '

6e sR z e t u f t R z f t R z



 

    
 

.                       (30) 

 
 
4.  Results and Discussions 
 
The present model has been developed to study the combined effect of body acceleration, 
stenosis and slip-velocity on the pulsatile flow of blood through a stenosed tube considering 
blood as to behave like a Newtonian fluid. The equations governing the abovementioned flow 
are integrated by using a perturbation analysis with a very small Womersley frequency 
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parameter ( 0.5 1   ). Analytic expressions are obtained for axial velocity, flow-rate, wall 
shear stress and effective viscosity.  
 
When slip velocity 0su  , the present analysis leads to pulsatile flow model of blood in a 

stenosed artery with body acceleration and usual no-slip at the constricted vessel wall. 
For 0su   ,   1R z   (i.e.,   0R z R ) and  f t  constant, it yields to a parabolic velocity 

profile corresponding to Poiseuille flow. 
 
The existence of slip at the blood vessel wall have been indicated both theoretically (Brunn 
(1975), Jones (1966)) and experimentally [Bugliarello and Hayden (1962), Bennet (1967)] 
and the methods to detect (Astarita et al. (1964)) and determine (Cheng (1974)) slip 
experimentally, have been suggested in literature, the magnitudes of the wall slip are yet to be 
determined. In order to study the effects and influence of slip on the flow parameters, two 
values of su viz., 0 and 0.05s su u  are taken in this investigation. Further, in many 

situations, the human body is subjected to body accelerations (or vibrations) intentional or 
unintentional that may lead to many health problems. Just to study the influence of body 
acceleration on blood flow through a constricted artery, three values of body acceleration 
parameter B viz., 0,1 and 2B  are considered. In the foregoing analysis, we have attempted 
to show the variations in flow characteristics due to slip (at the stenosed wall), body 
acceleration and other parameters. 
 
Since velocity profiles provide a detailed description of the flow field, it is of interest to study 
their pattern. A comparison of velocity profiles, using equation (26) for cases of slip and no 
slip, body acceleration parameter etc., is shown in Figures 2 and 3. It is observed from the 
profiles (drawn at 0z  ) that axial velocity increases with a constant wall slip for fixed 
magnitudes of e and t . It increases with the radial distance attaining the maximum magnitude 
at the axis ( 0r  ) and the minimum at the boundary (  r R z ). As the body acceleration 

parameter B increases, velocity increases. As time  0t  increases, velocity decreases. 

However, velocity is seen to be greater in case of a uniform tube than that in a constricted 
artery. It is clearly indicated that the flow parameters and sB u bring in significant changes in 

axial velocity both qualitatively and quantitatively. Velocity profiles indicate a non-parabolic 
trend (almost plugged profiles for 0s  ). 

 
The variation of volumetric flow rate with the pressure gradient parameter e  for different 
parameters is presented in Figure 4. It is observed that flow rate, in all cases, increases with 
the employment of axial wall slip. As e increases, flow rate increases accordingly. For both 
slip and no-slip cases, magnitudes of flow rate are seen to be higher in a uniform tube than 
those in a stenosed artery. As body acceleration parameter B increases, flow rate increases. 
The lowest and the highest values of Q are noticed at 0 and e>0e   respectively. The profiles 

obtained with 1, 0s sB u     and  0 , 0.2 0s sB u     indicate the highest and the 

lowest trends in the flow rateQ . Thus, considering the variations in B , ands su  , it is seen that 

flow rates in uniform arteries are greater  than those in constricted arteries. The flow rate is 
enhanced by the introduction of a body acceleration parameter in the flow regime and it is 
further enhanced by the introduction of a velocity slip. 
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The wall shear stress w and its variations with parameters ,  and sB e  , for a full scale of time 

t ( 0 360t  ) in degrees, have been computed from equation (28) and shown in Figure 5. It 
could be actually noticed that w is greatly influenced by the body acceleration parameter B in 

a stenosed artery and as B increases, w decreases. However, w attains its minimum at 
0180t  and the maximum at 0 00 ,360t  . 

 

The variations of effective viscosity e [computed from equation (30)] with axial distance z , 

axial slip su and stenosis height s , are shown in Figure 6. It is observed that the effective 

viscosity e is less with the velocity slip than that with no-slip at the vessel boundary. As 

stenosis height s increases, e increases. Also, e  varies markedly through the 

stenosis  0s  reaching a maximum value at the section of minimum cross-sectional area 

(at 0z  ) and minimum at the two ends ( 0 0,z z z  ). The corresponding e in a normal 

artery region  0s  , is represented by dotted straight lines. However, introduction of 

velocity slip at the arterial wall reduces the effective viscosity in both uniform  0s  and 

stenosed vessels  0s  . Also, e increases, as s increases. Thus, e in this case shows 

Inverse Fahraeus-Linqvist Effect (IFLE).  

 
5.  Conclusion 
 
The present analysis deals with pulsatile blood flow through a stenosed artery (Figure 1) 
subject to periodic body acceleration and an axial velocity slip at the constricted wall. The 
equations of motion, governing the flow are integrated by using perturbation method. It is of 
interest that it includes Poiseulli’s parabolic profile as its special case. Analytic expressions 
for flow variables are obtained and their variations with different flow parameters are 
presented graphically. It is observed that as expected, axial velocity and flow rate increase 
with the wall slip whereas effective viscosity decreases due to a slip. Also velocity and flow 
rate increase but wall shear stress shows both increasing and decreasing trends with the rise 
in body acceleration parameter B .Effective viscosity e increases as s increases. However, 

e is lowered for both uniform tube  0s  and stenosed artery  0s  , as a result of wall 

slip.  
 
The observations made in this investigation are in agreement with the theoretical model of 
Young (1968) that the wall shear stress and resistance to flow increases with an increase in 
stenosis size. The present analysis shows two anomalous behaviors in blood flow, viz., 
plugged velocity profiles and Inverse Fahraeus-Lindqvist (IFLE).  
 
In this model, it is noticed that due to the employment of a velocity slip at the constricted 
wall, axial velocity and flow rate both will increase but effective viscosity will decrease. 
Also, velocity and flow rate further enhance whereas effective viscosity decreases due to the 
influence of periodic body acceleration. This clearly indicates that there are great influences 
of both slip and body acceleration on the flow variables. Further, these show that slip at a 
diseased artery could play a prominent role in blood flow modeling. It may be worthwhile to 
notice that employment of slip at wall will accelerate the speed and flow rate on one hand and 

9

Biswas and Chakraborty: Pulsatile Flow of Blood in a Constricted Artery with Body Acceleration

Published by Digital Commons @PVAMU, 2009



338                 Biswas and Chakraborty 
  

 

retard the resistance to flow on the other. As a result, bore of the vessel will increase, stenosis 
size will be lowered and rate of flow will be higher than earlier. From the analysis, it may be 
concluded that with slip, the damages to the vessel wall could be reduced. This kind of 
reduction in wall shear stress, effective viscosity could be exploited for better functioning of 
the diseased arterial systems. Hence one may look forward for drugs or devices which would 
produce slip and use them for treatment of peripheral arterial diseases. 
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Figure 1. Schematic diagram of an artery with stenosis. 

 

 

Figure 2.  Variation of axial velocity with radial distance at 0z  for different values of        
     su and B with 1e  and 1t  . 
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Figure 3.  Variation of axial velocity with radial distance at 0z  for different values of time and height of 

stenosis with 1, 1, 0.05sB e u     

 

 
Figure 4.  Variation of flow-rate with pressure gradient for different values of , sB u and s  with 1t   
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Figure 5.  Variation of wall shear stress with time for different values of B with 1e  , and 0.2s 

 
 
 

 
Figure 6.  Variation of Apparent viscosity with axial distance for different values of s and su with 1e  , 

1B  and 1t    
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