5 research outputs found

    Characterization of Hemagglutinin Antigens on Influenza Virus and within Vaccines Using Electron Microscopy

    No full text
    Influenza viruses affect millions of people worldwide on an annual basis. Although vaccines are available, influenza still causes significant human mortality and morbidity. Vaccines target the major influenza surface glycoprotein hemagglutinin (HA). However, circulating HA subtypes undergo continual variation in their dominant epitopes, requiring vaccines to be updated annually. A goal of next-generation influenza vaccine research is to produce broader protective immunity against the different types, subtypes, and strains of influenza viruses. One emerging strategy is to focus the immune response away from variable epitopes, and instead target the conserved stem region of HA. To increase the display and immunogenicity of the HA stem, nanoparticles are being developed to display epitopes in a controlled spatial arrangement to improve immunogenicity and elicit protective immune responses. Engineering of these nanoparticles requires structure-guided design to optimize the fidelity and valency of antigen presentation. Here, we review electron microscopy applied to study the 3D structures of influenza viruses and different vaccine antigens. Structure-guided information from electron microscopy should be integrated into pipelines for the development of both more efficacious seasonal and universal influenza vaccine antigens. The lessons learned from influenza vaccine electron microscopic research could aid in the development of novel vaccines for other pathogens

    myotilin Mutation Found in Second Pedigree with LGMD1A

    No full text
    Limb-girdle muscular dystrophy 1A (LGMD1A [MIM 159000]) is an autosomal dominant form of muscular dystrophy characterized by adult onset of proximal weakness progressing to distal muscle weakness. We have reported elsewhere a mutation in the myotilin gene in a large, North American family of German descent. Here, we report the mutation screening of an additional 86 families with a variety of neuromuscular pathologies. We have identified a new myotilin mutation in an Argentinian pedigree with LGMD1 that is predicted to result in the conversion of serine 55 to phenylalanine (S55F). This mutation has not been found in 392 control chromosomes and is located in the unique N-terminal domain of myotilin, only two residues from the T57I mutation reported elsewhere. Both T57I and S55F are located outside the α-actinin and γ-filamin binding sites within myotilin. The identification of two independent pedigrees with the same disease, each bearing a different mutation in the same gene, has long been the gold standard for establishing a causal relationship between defects in a gene and the resultant disease. As a description of the second known pedigree with LGMD1A, this finding constitutes that gold standard of proof that mutations in the myotilin gene cause LGMD1A
    corecore