52 research outputs found

    Lifestyle and dietary factors, iron status and one-carbon metabolism polymorphisms in a sample of Italian women and men attending a Transfusion Medicine Unit: a cross-sectional study

    Get PDF
    Iron (Fe) status among healthy male and female blood donors, aged 18–65 years, is estimated. General characteristics and lifestyle factors, dietary habits and major one-carbon metabolism-related polymorphisms were also investigated. An explorative cross-sectional study design was used to examine a sample of blood donors attending the Transfusion Medicine Unit of the Verona University Hospital, Italy. From April 2016 to May 2018, 499 subjects were enrolled (255 men, 244 women, 155 of whom of childbearing age). Major clinical characteristics including lifestyle, dietary habits and Fe status were analysed. The MTHFR 677C > T, cSHMT 1420C > T, DHFR 19bp ins/del and RFC1 80G > A polymorphisms were also assayed. Mean plasma concentrations of Fe and ferritin were 16·6 µmol/l (95 % CI 16·0, 17·2) and 33·8 µg/l (95 % CI 31·5, 36·2), respectively. Adequate plasma Fe concentrations (> 10·74 µmol/l) were detected in 84·3 % and adequate ferritin concentrations (20–200 µg/l) was found in 72·5 % of the whole cohort. Among the folate-related polymorphisms analysed, carriers of the DHFR 19bp del/del mutant allele showed lower ferritin concentration when compared with DHFR 19bp ins/del genotypes. In a sample of Italian healthy blood donors, adequate plasma concentrations of Fe and ferritin were reached in a large proportion of subjects. The relationship of Fe status with lifestyle factors and folate-related polymorphisms requires more investigation to clarify further gene–nutrient interactions between folate and Fe metabolism

    Novel protein-truncating variant in the APOB gene may protect from coronary artery disease and adverse cardiovascular events

    Get PDF
    Background and aims: Genetic testing is still rarely used for the diagnosis of dyslipidemia, even though gene variants determining plasma lipids levels are not uncommon.Methods: Starting from a a pilot-analysis of targeted Next Generation Sequencing (NGS) of 5 genes related to familial hypercholesterolemia (LDLR, APOB, PCSK9, HMGCR, APOE) within a cardiovascular cohort in subjects with extreme plasma concentrations of low-density lipoprotein (LDL) cholesterol, we discovered and characterized a novel point mutation in the APOB gene, which was associated with very low levels of apolipoprotein B (ApoB) and LDL cholesterol.Results: APOB c.6943 G > T induces a premature stop codon at the level of exon 26 in the APOB gene and generates a protein which has the 51% of the mass of the wild type ApoB-10 0 (ApoB-51), with a trun-cation at the level of residue 2315. The premature stop codon occurs after the one needed for the synthesis of ApoB-4 8, allowing chylomicron production at intestinal level and thus avoiding potential nutritional impairments. The heterozygous carrier of APOB c.6943G > T, despite a very high-risk profile encompassing all the traditional risk factors except for dyslipidemia, had normal coronary arteries by angiography and did not report any major adverse cardiovascular event during a 20-years follow-up, thereby obtaining advantage from the gene variant as regards protection against atherosclerosis, apparently without any metabolic retaliation.Conclusions: Our data support the use of targeted NGS in well-characterized clinical settings, as well as they indicate that.a partial block of ApoB production may be well tolerated and improve cardiovascular outcomes. (C) 2022 The Authors. Published by Elsevier B.V

    Detection of urinary exosomal HSD11B2 mRNA expression: a useful novel tool for the diagnostic approach of dysfunctional 11β-HSD2-related hypertension

    Get PDF
    Apparent mineralocorticoid excess (AME) is an autosomal recessive disorder caused by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) enzyme deficiency, traditionally assessed by measuring either the urinary cortisol metabolites ratio (tetrahydrocortisol+allotetrahydrocortisol/tetrahydrocortisone, THF+5αTHF/THE) or the urinary cortisol/cortisone (F/E) ratio. Exosomal mRNA is an emerging diagnostic tool due to its stability in body fluids and its biological regulatory function. It is unknown whether urinary exosomal HSD11B2 mRNA is related to steroid ratio or the HSD11B2 662 C>G genotype (corresponding to a 221 A>G substitution) in patients with AME and essential hypertension (EH)

    One-carbon genetic variants and the role of MTHFD1 1958G>A in liver and colon cancer risk according to global DNA methylation

    Get PDF
    Several polymorphic gene variants within one-carbon metabolism, an essential pathway for nucleotide synthesis and methylation reactions, are related to cancer risk. An aberrant DNA methylation is a common feature in cancer but whether the link between one-carbon metabolism variants and cancer occurs through an altered DNA methylation is yet unclear. Aims of the study were to evaluate the frequency of one-carbon metabolism gene variants in hepatocellular-carcinoma, cholangiocarcinoma and colon cancer, and their relationship to cancer risk together with global DNA methylation status. Genotyping for BHMT 716A>G, DHFR 19bp ins/del, MTHFD1 1958G>A, MTHFR 677C>T, MTR 2756A>G, MTRR 66A>G, RFC1 80G>A, SHMT1 1420C>T, TCII 776C>G and TS 2rpt-3rpt was performed in 102 cancer patients and 363 cancer-free subjects. Methylcytosine (mCyt) content was measured by LC/MS/MS in peripheral blood mononuclear cells (PBMCs) DNA. The MTHFD1 1958AA genotype was significantly less frequent among cancer patients as compared to controls (p = 0.007) and related to 63% reduction of overall cancer risk (p = 0.003) and 75% of colon cancer risk (p = 0.006). When considering PBMCs mCyt content, carriers of the MTHFD1 1958GG genotype showed a lower DNA methylation as compared to carriers of the A allele (p = 0.048). No differences were highlighted by evaluating a possible relationship between the other polymorphisms analyzed with cancer risk and DNA methylation. The MTHFD1 1958AA genotype is linked to a significantly reduced cancer risk. The 1958GG genotype is associated to PBMCs DNA hypomethylation as compared to the A allele carriership that may exert a protective effect for cancer risk by preserving from DNA hypomethylation

    DNA Methylation and Hydroxymethylation in Primary Colon Cancer and Synchronous Hepatic Metastasis

    Get PDF
    Colon cancer is one of the most frequent solid tumor and simultaneous diagnosis of primary colon cancer and liver metastases occurs in about one fourth of cases. The current knowledge on epigenetic signatures, especially those related to hydroxymethylation in primary cancer tissue, synchronous metastasis, and blood circulating cells is lacking. This study aimed to investigate both methylcytosine (mCyt) and hydroxymethylcytosine (hmCyt) status in the DNA of individual patients from colon cancer tissue, synchronous liver metastases, and in cancer-free colon and liver tissues and leukocytes. Patients undergoing curative surgery (n= 16) were enrolled and their laboratory and clinical history data collected. The contents of mCyt and hmCyt were determined by a liquid chromatography/mass spectrometry (LC/MS/MS) method in DNA extracted from primary colon cancer, synchronous hepatic metastatic tissues and homologous cancer-free tissues, i.e., colon and liver tissues as well as leukocytes. The mCyt and hmCyt levels were compared between cancerous and cancer-free tissues, and correlations between leukocytes and colon/liver tissues for both the mCyt and hmCyt levels were evaluated. The mCyt levels were similar in primary colon cancer and liver metastasis tissues (4.69 \ub1 0.37% vs. 4.77 \ub1 0.38%, respectively,p= 0.535), and both primary and metastatic tissues were hypomethylated compared to cancer-free colon (4.98 \ub1 0.26%). The difference in the mCyt content between cancerous and cancer-free colon tissues was significantly lower in primary colon cancer (p= 0.004), but not in liver metastasis (p= 0.148). The hmCyt content was similar in primary colon cancer compared to liver metastasis (0.035%, C.I. 0.024-0.052% versus 0.035%, C.I. 0.021-0.058%, respectively,p =0.905) and markedly depleted compared to the cancer-free colon (0.081%, C.I. 0.055-0.119%) with a statistically significant difference (p< 0.05) for both comparisons. The mCyt levels showed a borderline correlation between leukocytes and colon cancer tissue (Pearson's correlation coefficient = 0.51,p= 0.052) while no correlations were detected for the hmCyt levels. In conclusion, primary colon cancer and synchronous liver metastasis tissues showed a similar epigenetic status but were significantly hypomethylated and hypohydroxymethylated as compared to homologous cancer-free colon tissues

    The RFC1 80G>A, among Common One-Carbon Polymorphisms, Relates to Survival Rate According to DNA Global Methylation in Primary Liver Cancers

    Get PDF
    Polymorphisms within one-carbon metabolism genes have been largely studied in relation to cancer risk for the function of this pathway in nucleotide synthesis and DNA methylation. Aims of this study were to explore the possible link among several common functional gene polymorphisms within one-carbon metabolism and survival rate in primary liver cancers, i.e., hepatocellular carcinoma and cholangiocarcinoma, and to assess the additional effect of global DNA methylation on survival rate and mortality risk. Forty-seven primary liver cancer patients were genotyped for ten polymorphisms: DHFR 19bp ins/del, TS 2rpt-3rpt, MTHFD1 1958G>A, MTHFR 677C>T, MTR 2756A>G, MTRR 66A>G, RFC1 80G>A, SHMT1 1420C>T, BHMT 716 A>G, TC II 776C>G. Methylation was determined in peripheral blood mononuclear cells (PBMCs) DNA as methylcytosine (mCyt) content using LC/MS/MS. Among the polymorphisms analysed, the RFC1 80G>A (rs1051266) influenced the survival rate in primary liver cancers. The RFC1 80AA was associated to a significantly reduced survival rate (22.2%) as compared to both GG and GA genotypes (61.5% and 76% respectively, p = 0.005). When the cancer patients were stratified according to the mCyt median value as high (>5.34%) or low ( 645.34%), the concomitant presence of AA genotype and low mCyt level led to a significantly worse survival rate as compared to the G allele carriership (pA polymorphism influenced the survival rate, and the presence of RFC1 80AA genotype with low global methylation in PBMCs DNA was associated with poorer prognosis and higher mortality risk, therefore highlighting novel molecular signatures potentially helpful to define prognostic markers for primary liver cancers

    Alcohol and DNA methylation

    No full text
    Alcohol is an environmental toxicant that is associated with several major human diseases because it has harmful effects on many different tissues and organs. Alcohol effects cellular toxicity by several mechanisms, mainly through acetaldehyde, the first metabolite produced during ethanol degradation, and through the formation of reactive oxygen species. Acetaldehyde interferes with DNA synthesis and repair mechanisms and is well recognized as playing a role in cancer of upper and lower gastrointestinal tract. Meanwhile, the hazardous effects of alcohol on the liver are more likely to be mediated by oxidative stress. Several studies have also demonstrated that alcohol impairs one-carbon metabolism leading to an aberrant methyl group transfer, and it is believed that this molecular event may play a role in the develop- ment of cancer and other alcohol-related diseases. In this chapter, we focused on the effects of alcohol on one-carbon metabolism and its influence on DNA methylation, which could be one of the mechanisms involved in the epigenetic effects of alcohol

    Vitamins and epigenetics

    No full text
    This chapter focuses on the role of vitamins with a recognized function in modulating epigenetic mechanisms. Epigenetics refers to the complex of somatically heritable states that regulate gene expression resulting from modifications in DNA and chromatin structure that occur without alterations in the DNA sequence. Epigenetic phenomena include DNA methylation, posttranslational histone modifications, chromatin remodeling mechanisms, and the role of small noncoding RNA. Folate, namely vitamin B9, is a major player in the link between vitamins and epigenetics because it is responsible for the transport of methyl groups for the methylation of DNA, one of the most significant epigenetic phenomena. While pathologic conditions are associated with severe vitamin deficiency, it is now known that even mild vitamin deficiencies, especially of the hydrosoluble B group, are related to the impairment of epigenetic features of DNA. Vitamin A status is also associated with the modification of DNA methylation and other epigenetic phenomena at histone tails sites

    One-carbon metabolism and epigenetics

    No full text
    The function of one-carbon metabolism is that of regulating the provision of methyl groups for biological methylation reactions including that of DNA and histone proteins. Methylation at specific sites into the DNA sequence and at histone tails are among the major epigenetic feature of mammalian genome for the regulation of gene expression. The enzymes within one-carbon metabolism are dependent from a number of vitamins or nutrients that serve either as co-factors or methyl acceptors or donors among which folate, vitamin B12, vitamin B6, betaine, choline and methionine have a major role. Several evidences show that there is a strict inter-relationship between one-carbon metabolism nutrients and epigenetic phenomena. Epigenetics is closely involved in gene transcriptional regulation through modifications super-imposed to the nucleotide sequence of DNA, such as DNA methylation, through chromatin remodeling systems that involves post-translational modifications of histones or through non-coding RNAs-based mechanisms. The epigenetic features of the genome are potentially modifiable by the action of several environmental factors among which nutrients cover a special place and interest considering their potential of influencing regulatory pathways at a molecular level by specific nutritional intervention and eventually influence disease prevention and outcomes. The present review will focus on the link between one-carbon nutrients and epigenetic phenomena based on the current knowledge from findings in cell culture, animal models and human studies

    Reply

    No full text
    DNA methylation and DNA hydrocymethylation from peripheral blood mononuclear cels are valida biomarkers for survival rate in human primary liver cancer
    • …
    corecore