1,753 research outputs found
Processing of yttrium-doped barium zirconate for high proton conductivity
The factors governing the transport properties of yttrium-doped barium zirconate (BYZ) have been explored, with the aim of attaining reproducible proton conductivity in well-densified samples. It was found that a small initial particle size (50–100 nm) and high-temperature sintering (1600 °C) in the presence of excess barium were essential. By this procedure, BaZr0.8Y0.2O3-d with 93% to 99% theoretical density and total (bulk plus grain boundary) conductivity of 7.9 × 10^-3 S/cm at 600 °C [as measured by alternating current (ac) impedance spectroscopy under humidified nitrogen] could be reliably prepared. Samples sintered in the absence of excess barium displayed yttria-like precipitates and a bulk conductivity that was reduced by more than 2 orders of magnitude
DISTRIBUSI SPASIAL LAHAN KOPI EKSISTING BERDASARKAN KETINGGIAN DAN ARAHAN FUNGSI KAWASAN DI KABUPATEN ACEH TENGAH
Alcohol Fuel Cells at Optimal Temperatures
High-power-density alcohol fuel cells can relieve many of the daunting challenges facing a hydrogen energy economy. Here, such fuel cells are achieved using CsH2PO4 as the electrolyte and integrating into the anode chamber a Cu-ZnO/Al2O3 methanol steam-reforming catalyst. The temperature of operation, ~250°C, is matched both to the optimal value for fuel cell power output and for reforming. Peak power densities using methanol and ethanol were 226 and 100 mW/cm^2, respectively. The high power output (305 mW/cm^2) obtained from reformate fuel containing 1% CO demonstrates the potential of this approach with optimized reforming catalysts and also the tolerance to CO poisoning at these elevated temperatures
Evaluation of Pressure Drop and Hydrogen Oxidation Performance of a Honeycomb Catalyst Impregnated with the Noble Metal
A Level Transition of Environmental Atmospheric Tritiated Gas Activities in 2004 ? 2009 at Toki Site
A Transition of Environmental Tritiated Water Vapor, Hydrogen and Methane Gases in 2004 - 2008 at Toki Site
Atmospheric Tritium Measurement with Discriminate Sampling of Water, Hydrogen and Methane Gases
Comparison of the Oxidation Characteristics of Metal Honeycomb Catalyst with Difference Sizes
Monitoring of tritium purity during long-term circulation in the KATRIN test experiment LOOPINO using laser Raman spectroscopy
The gas circulation loop LOOPINO has been set up and commissioned at Tritium
Laboratory Karlsruhe (TLK) to perform Raman measurements of circulating tritium
mixtures under conditions similar to the inner loop system of the neutrino-mass
experiment KATRIN, which is currently under construction. A custom-made
interface is used to connect the tritium containing measurement cell, located
inside a glove box, with the Raman setup standing on the outside. A tritium
sample (purity > 95%, 20 kPa total pressure) was circulated in LOOPINO for more
than three weeks with a total throughput of 770 g of tritium. Compositional
changes in the sample and the formation of tritiated and deuterated methanes
CT_(4-n)X_n (X=H,D; n=0,1) were observed. Both effects are caused by hydrogen
isotope exchange reactions and gas-wall interactions, due to tritium {\beta}
decay. A precision of 0.1% was achieved for the monitoring of the T_2
Q_1-branch, which fulfills the requirements for the KATRIN experiment and
demonstrates the feasibility of high-precision Raman measurements with tritium
inside a glove box
- …
