2,701 research outputs found

    Depletion isolation effect in Vertical MOSFETS during transition from partial to fully depleted operation

    No full text
    A simulation study is made of floating-body effects (FBEs) in vertical MOSFETs due to depletion isolation as the pillar thickness is reduced from 200 to 10 nm. For pillar thicknesses between 200–60 nm, the output characteristics with and without impact ionization are identical at a low drain bias and then diverge at a high drain bias. The critical drain bias Vdc for which the increased drain–current is observed is found to decrease with a reduction in pillar thickness. This is explained by the onset of FBEs at progressively lower values of the drain bias due to the merging of the drain depletion regions at the bottom of the pillar (depletion isolation). For pillar thicknesses between 60–10 nm, the output characteristics show the opposite behavior, namely, the critical drain bias increases with a reduction in pillar thickness. This is explained by a reduction in the severity of the FBEs due to the drain debiasing effect caused by the elevated body potential. Both depletion isolation and gate–gate coupling contribute to the drain–current for pillar thicknesses between 100–40 nm

    Asymmetric gate induced drain leakage and body leakage in vertical MOSFETs with reduced parasitic capacitance

    No full text
    Vertical MOSFETs, unlike conventional planar MOSFETs, do not have identical structures at the source and drain, but have very different gate overlaps and geometric configurations. This paper investigates the effect of the asymmetric source and drain geometries of surround-gate vertical MOSFETs on the drain leakage currents in the OFF-state region of operation. Measurements of gate-induced drain leakage (GIDL) and body leakage are carried out as a function of temperature for transistors connected in the drain-on-top and drain-on-bottom configurations. Asymmetric leakage currents are seen when the source and drain terminals are interchanged, with the GIDL being higher in the drain-on-bottom configuration and the body leakage being higher in the drain-on-top configuration. Band-to-band tunneling is identified as the dominant leakage mechanism for both the GIDL and body leakage from electrical measurements at temperatures ranging from ?50 to 200?C. The asymmetric body leakage is explained by a difference in body doping concentration at the top and bottom drain–body junctions due to the use of a p-well ion implantation. The asymmetric GIDL is explained by the difference in gate oxide thickness on the vertical (110) pillar sidewalls and the horizontal (100) wafer surface

    Depletion-Isolation Effect in Vertical MOSFETs During the Transition From Partial to Fully Depleted Operation

    No full text
    A simulation study is made of floating-body effects (FBEs) in vertical MOSFETs due to depletion isolation as the pillar thickness is reduced from 200 to 10 nm. For pillar thicknesses between 200–60 nm, the output characteristics with and without impact ionization are identical at a low drain bias and then diverge at a high drain bias. The critical drain bias Vdc for which the increased drain–current is observed is found to decrease with a reduction in pillar thickness. This is explained by the onset of FBEs at progressively lower values of the drain bias due to the merging of the drain depletion regions at the bottom of the pillar (depletion isolation). For pillar thicknesses between 60–10 nm, the output characteristics show the opposite behavior, namely, the critical drain bias increases with a reduction in pillar thickness. This is explained by a reduction in the severity of the FBEs due to the drain debiasing effect caused by the elevated body potential. Both depletion isolation and gate–gate coupling contribute to the drain–current for pillar thicknesses between 100–40 nm

    Structural relaxation of E' gamma centers in amorphous silica

    Full text link
    We report experimental evidence of the existence of two variants of the E' gamma centers induced in silica by gamma rays at room temperature. The two variants are distinguishable by the fine features of their line shapes in paramagnetic resonance spectra. These features suggest that the two E' gamma differ for their topology. We find a thermally induced interconversion between the centers with an activation energy of about 34 meV. Hints are also found for the existence of a structural configuration of minimum energy and of a metastable state.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    The Persistence and Memory of Polar Nano-Regions in a Ferroelectric Relaxor Under an Electric Field

    Full text link
    The response of polar nanoregions (PNR) in the relaxor compound Pb[(Zn1/3_{1/3}Nb2/3_{2/3})0.92_{0.92}Ti0.08_{0.08}]O3_3 subject to a [111]-oriented electric field has been studied by neutron diffuse scattering. Contrary to classical expectations, the diffuse scattering associated with the PNR persists, and is even partially enhanced by field cooling. The effect of the external electric field is retained by the PNR after the field is removed. The ``memory'' of the applied field reappears even after heating the system above TCT_C, and cooling in zero field

    Spectral properties on a circle with a singularity

    Full text link
    We investigate the spectral and symmetry properties of a quantum particle moving on a circle with a pointlike singularity (or point interaction). We find that, within the U(2) family of the quantum mechanically allowed distinct singularities, a U(1) equivalence (of duality-type) exists, and accordingly the space of distinct spectra is U(1) x [SU(2)/U(1)], topologically a filled torus. We explore the relationship of special subfamilies of the U(2) family to corresponding symmetries, and identify the singularities that admit an N = 2 supersymmetry. Subfamilies that are distinguished in the spectral properties or the WKB exactness are also pointed out. The spectral and symmetry properties are also studied in the context of the circle with two singularities, which provides a useful scheme to discuss the symmetry properties on a general basis.Comment: TeX, 26 pages. v2: one reference added and two update

    miRNA-based rapid differentiation of purified neurons from hPSCs advancestowards quick screening for neuronal disease phenotypes in vitro

    Get PDF
    Obtaining differentiated cells with high physiological functions by an efficient, but simple and rapid differentiation method is crucial for modeling neuronal diseases in vitro using human pluripotent stem cells (hPSCs). Currently, methods involving the transient expression of one or a couple of transcription factors have been established as techniques for inducing neuronal differentiation in a rapid, single step. It has also been reported that microRNAs can function as reprogramming effectors for directly reprogramming human dermal fibroblasts to neurons. In this study, we tested the effect of adding neuronal microRNAs, miRNA-9/9*, and miR-124 (miR-9/9*-124), for the neuronal induction method of hPSCs using Tet-On-driven expression of the Neurogenin2 gene

    Fenestrated azygos A2 segment: a rare anatomic variation

    Get PDF
    • 

    corecore