44 research outputs found

    Senescence and Sexual Selection in a Pelagic Copepod

    Get PDF
    The ecology of senescence in marine zooplankton is not well known. Here we demonstrate senescence effects in the marine copepod Oithona davisae and show how sex and sexual selection accelerate the rate of ageing in the males. We show that adult mortality increases and male mating capacity and female fertility decrease with age and that the deterioration in reproductive performance is faster for males. Males have a limited mating capacity because they can fertilize < 2 females day−1 and their reproductive life span is 10 days on average. High female encounter rates in nature (>10 day−1), a rapid age-dependent decline in female fertility, and a high mortality cost of mating in males are conducive to the development of male choosiness. In our experiments males in fact show a preference for mating with young females that are 3 times more fertile than 30-day old females. We argue that this may lead to severe male-male competition for young virgin females and a trade-off that favours investment in mate finding over maintenance. In nature, mate finding leads to a further elevated mortality of males, because these swim rapidly in their search for attractive partners, further relaxing fitness benefits of maintenance investments. We show that females have a short reproductive period compared to their average longevity but virgin females stay fertile for most of their life. We interpret this as an adaptation to a shortage of males, because a long life increases the chance of fertilization and/or of finding a high quality partner. The very long post reproductive life that many females experience is thus a secondary effect of such an adaptation

    Supporting Biomedical Research Training for Historically Underrepresented Undergraduates Using Interprofessional, Nonformal Education Structures

    Get PDF
    Research experience provides critical training for new biomedical research scientists. Students from underrepresented populations studying science, technology, engineering, and mathematics (STEM) are increasingly recruited into research pathways to diversify STEM fields. However, support structures outside of research settings designed to help these students navigate biomedical research pathways are not always available; nor are program support components outside the context of laboratory technical skills training and formal mentorship well understood. This study leveraged a multi-institutional research training program, Enhancing Cross-Disciplinary Infrastructure and Training at Oregon (EXITO), to explore how nine institutions designed a new curricular structure (Enrichment) to meet a common goal of enhancing undergraduate research training and student success. EXITO undergraduates participated in a comprehensive, 3-year research training program with the Enrichment component offered across nine sites: three universities and six community colleges, highly diverse in size, demographics, and location. Sites’ approaches to supporting students in the training program were studied over a 30-month period. All sites independently created their own nonformal curricular structures, implemented interprofessionally via facilitated peer groups. Site data describing design and implementation were thematically coded to identify essential programmatic components across sites, with student feedback used to triangulate findings. Enrichment offered students time to critically reflect on their interests, experiences, and identities in research; network with peers and professionals; and support negotiation of hidden and implicit curricula. Students reported the low-pressure setting and student-centered curriculum balanced the high demands associated with academics and research. Core curricular themes described Enrichment as fostering a sense of community among students, exposing students to career paths and skills, and supporting development of students’ professional identities. The non-formal, interprofessional curricula enabled students to model diverse biomedical identities and pathways for each other while informing institutional structures to improve diverse undergraduate students’ success in academia and research
    corecore