15,740 research outputs found

    Numerical simulation of the twist-grain-boundary phase of chiral liquid crystals

    Get PDF
    We study the core structure of the twist-grain-boundary (TGB) phase of chiral liquid crystals by numerically minimizing the Landau-de Gennes free energy. We analyze the morphology of layers at the grain boundary, to better understand the mechanism of frustration between the smectic layer order and chirality. As the chirality increases, the effective bending rigidity of layers is reduced due to unlocking of the layer orientation and the director. This results in large deviation of the layer morphology from that of Scherk's first minimal surface and linear stack of screw dislocations (LSD).Comment: 4 pages and 6 figure

    Linear-response theory of the longitudinal spin Seebeck effect

    Full text link
    We theoretically investigate the longitudinal spin Seebeck effect, in which the spin current is injected from a ferromagnet into an attached nonmagnetic metal in a direction parallel to the temperature gradient. Using the fact that the phonon heat current flows intensely into the attached nonmagnetic metal in this particular configuration, we show that the sign of the spin injection signal in the longitudinal spin Seebeck effect can be opposite to that in the conventional transverse spin Seebeck effect when the electron-phonon interaction in the nonmagnetic metal is sufficiently large. Our linear-response approach can explain the sign reversal of the spin injection signal recently observed in the longitudinal spin Seebeck effect.Comment: Proc. of ICM 2012 (Accepted for publication in J. Korean Phys. Soc.), typos correcte

    Chemical evolution of the bulge of M31: predictions about abundance ratios

    Full text link
    We aim at reproducing the chemical evolution of the bulge of M31 by means of a detailed chemical evolution model, including radial gas flows coming from the disk. We study the impact of the initial mass function, the star formation rate and the time scale for bulge formation on the metallicity distribution function of stars. We compute several models of chemical evolution using the metallicity distribution of dwarf stars as an observational constraint for the bulge of M31. Then, by means of the model which best reproduces the metallicity distribution function, we predict the [X/Fe] vs. [Fe/H] relations for several chemical elements (O, Mg, Si, Ca, C, N). Our best model for the bulge of M31 is obtained by means of a robust statistical method and assumes a Salpeter initial mass function, a Schmidt-Kennicutt law for star formation with an exponent k=1.5, an efficiency of star formation of 15±0.27Gyr1\sim 15\pm 0.27\, Gyr^{-1}, and an infall timescale of 0.10±0.03\sim 0.10\pm 0.03Gyr. Our results suggest that the bulge of M31 formed very quickly by means of an intense star formation rate and an initial mass function flatter than in the solar vicinity but similar to that inferred for the Milky Way bulge. The [α\alpha/Fe] ratios in the stars of the bulge of M31 should be high for most of the [Fe/H] range, as is observed in the Milky Way bulge. These predictions await future data to be proven.Comment: Accepted for publication by MNRA

    The Three Component Electronic Structure of the Cuprates Derived from SI-STM

    Full text link
    We present a phenomenological model that describes the low energy electronic structure of the cuprate high temperature superconductor Bi2Sr2CaCu2O8+x as observed by Spectroscopic Imagining Scanning Tunneling Microscopy (SI-STM). Our model is based on observations from Quasiparticle Interference (QPI) measurements and Local Density of States (LDOS) measurements that span a range of hole densities from critical doping, p~0.19, to extremely underdoped, p~0.06. The model presented below unifies the spectral density of states observed in QPI studies with that of the LDOS. In unifying these two separate measurements, we find that the previously reported phenomena, the Bogoliubov QPI termination, the checkerboard conductance modulations, and the pseudogap are associated with unique energy scales that have features present in both the q-space and LDOS(E) data sets

    Asymmetric Supernovae from Magneto-Centrifugal Jets

    Full text link
    Strong toroidal magnetic fields generated in stellar collapse can generate magneto-centrifugal jets in analogy to those found in simulations of black hole accretion and explain why all core collapse supernovae are found to be substantially asymmetric and predominantly bi-polar. We describe two phases: the initial LeBlanc-Wilson jet and a subsequent protopulsar or toroidal jet that propagates at about the core escape velocity. The jets will produce bow shocks that tend to expel matter, including iron and silicon, into equatorial tori, accounting for observations of the element distribution in Cas A. A magnetic ``switch'' mechanism may apply in instances of low density and large magnetic field with subsequent increase in the speed and collimation of the toroidal jet, depositing relatively little momentum. The result could be enough infall to form a black hole with a third, highly relativistic jet that could catch up to the protopulsar jet after it has emerged from the star. The interaction of these two jets could generate internal shocks and explain the presence of iron lines in the afterglow. Recent estimates that typical gamma-ray burst energy is about 3x10^50 erg imply either a very low efficiency for conversion of rotation into jets, or a rather rapid turnoff of the jet process even though the black hole still rotates rapidly. Magnetars and ``hypernovae'' might arise in an intermediate parameter regime of energetic jets that yield larger magnetic fields and provide more energy than the routine case, but that are not so tightly collimated that they yield failed supernova. (slightly abridged)Comment: AASTeX, 29 pages, 2 postscript figures, accepted by ApJ, November 20, 200
    corecore