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We study the structure of the twist-grain-boundary phase of chiral liquid crystals by numerically minimizing
the Landau–de Gennes free energy. We analyze the morphology of layers at the grain boundary, to better
understand the mechanism of frustration between the smectic layer order and chirality. As the chirality in-
creases, the layer compression energy strongly increases while the effective layer bending rigidity is reduced
due to unlocking of the layer orientation and the director. This results in large deviation of the layer morphol-
ogy from that of Scherk’s first minimal surface and linear stack of screw dislocations.
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Frustration causes complex structural patterns in a variety
of materials and over different length scales. To resolve the
frustration, the equilibrium patterns often contain topological
defects. Liquid crystals are some of the richest materials pro-
viding a variety of frustrated defect phases. Defects are in-
evitably formed by frustration between the smectic order and
chirality, because the periodic layer structure and continuous
helical structure are geometrically incompatible. As a result,
the frustration gives rise to a set of screw dislocations. The
simplest stable phase containing such defects is the twist-
grain-boundary �TGB� phase, the existence of which was
predicted using the analogy with the Abrikosov vortex lattice
of type-II superconductors �1�. In this phase, smectic slabs of
a certain length �grains� are twisted by a certain angle from
their neighbors and separated from them by a narrow region
�grain boundary� in which screw dislocations are aligned.

After its theoretical prediction �1� and experimental con-
firmation �2�, study of the TGB phase was extended to other
chiral frustrated phases and transitions between them. Theo-
retically, thermal fluctuation changes the transitions between
smectic-A �Sm-A�, TGBA, TGBC, and cholesteric �N*� phases
from second to first order. In parallel to the vortex liquid
phase of superconductors, fluctuation induces the melted
TGB phase or the chiral line phase �NL*� with a melted de-
fect lattice, which was theoretically predicted �3� and experi-
mentally confirmed �4,5�. Many other chiral frustrated
phases have been found and reported �6,7�.

On the other hand, the spatial structure of the TGB phase,
especially that of a grain boundary, still has much to be un-
derstood. Kamien and Lubensky �8� showed that the grain
boundary structure is well described by a linear stack of
screw dislocations �LSD� if the twist angle � is close to zero.
For small �, the layer structure is also approximated by
Scherk’s first minimal surface. However, the minimal surface
defined by vanishing mean curvature H is achieved when the
bending elasticity is the only contribution to the free energy.
Deviation from the minimal surface should occur due to the
other elastic effects, namely, the layer compression and the
twist Frank energies. Also, spatial variation of the density
near the TGB defect core is not considered in the previous
analytic studies, and the interplay between these effects re-

mains to be investigated �9–11�. Study of the TGB structure
for large twist angles should also be helpful for understand-
ing the structure of more complex phases, such as the NL*

and smectic blue phases �6,12�.
It might be worth mentioning that the TGB structure is

also exhibited by other materials such as twisted lamellae of
block copolymer melts �13� and defect-containing Turing
patterns in a reaction-diffusion system �14�. The mechanism
that determines the defect structure depends on the material,
and the uniqueness of the liquid crystal TGB structure is not
yet clarified.

In this Rapid Communication, we study the core structure
of a grain boundary by numerical minimization of the
Landau–de Gennes free energy. Thus, compared to previous
molecular simulations of the TGB phase �15,16�, our results
allow more direct comparison with analytical results. Also,
the previous simulations suffer from severe finite-size effects
because the size of the simulation box and the grain size �b

are generally incommensurate with each other. By focusing
on a single grain boundary, we become free from this prob-
lem and can study the core structure with a higher resolution.
The neglected grain boundary interaction would not affect
the core structure except in the vicinity of the TGB-N* tran-
sition. The difference between the simulation result and the
model surfaces �i.e., Scherk’s first surface and the LSD� is
analyzed as a function of the twist angle �. We discuss the
reason for the deviation in terms of the coupling between the
smectic order parameter and the director.

The free energy we utilize is the covariant Landau–de
Gennes model expressed as �1,17�

F = FDW + Fint + FFrank, �1�

FDW =� dr
g

4
� �

g
+ ���2�2

, �2�

Fint =� dr
B

2
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FFrank =� dr�K1

2
�� · n�2 +

K2

2
�n · � � n − k0�2

+
K3

2
�n � � � n�2� , �4�

where � is the smectic �complex� order parameter combin-
ing the density modulation ��Re�� and layer displacement,
and n is the director. The double-well potential FDW with the
dimensionless temperature � controls the order-disorder
�TGB-N* or Sm-A-N*� transition. The interaction part Fint
with the coupling constant B fixes the layer thickness d to
2� /q0. The third term is the Frank elastic energy. Although
the ratios between the Frank elastic constants Ki affect the
dislocation core structure �18�, we set all the Frank constants
to the same value K and focus on the role of chirality and
coupling between � and n. The correlation length of the
order parameter � is defined as �=	B / ���, the director
penetration length �=	Kg /B��� and the Ginzburg parameter
	
� /�=	gK /q0B. The TGB phase is stable only when
	
1/	2 according to the mean-field theory �1�.

The numerical minimization is performed in an Lx�Ly
�Lz simulation box, with the y and z axes identified with the
direction of dislocations and the helical axis, respectively. To
fix the transverse dimensions Lx and Ly, we fix the twist
angle per grain boundary � as an independent parameter,
instead of the chirality k0. Then, two smectic slabs sandwich-
ing a single grain boundary satisfy a two-dimensional �2D�
crystalline symmetry with the periods �x=d / sin�� /2� and
�y =d / cos�� /2� �see Fig. 1�. Thus we can assume the peri-
odic boundary condition in the transverse directions. We set
Lx=�x and Ly =�y to save computation time. The layer orien-
tation changes by the angle � along the helical axis, which is
imposed as a boundary condition at z=0 and z=Lz as fol-
lows. The director is set to n=n±= (±sin�� /2� , cos�� /2� ,0)
at z=Lz and z=0, respectively, while the smectic order pa-
rameters at these boundaries are connected by inversion with
respect to the plane x=Lx /2: ��x ,y ,0�=��Lx−x ,y ,Lz�. The
latter is compatible with the 2D crystalline symmetry in the
xy plane. For finite Lz, these boundary conditions induce in-
teraction of the grain boundary and its images. However, the
interaction is expected to decay exponentially �1� and hence
our boundary condition gives a good approximation if Lz /2
�� ,�. We will use Lz=2d in the simulation.

The free energy is minimized by solving the time-
dependent Ginzburg-Landau equations,

��

�t
= − ��


F


�
, �5�

�n

�t
= − �n�1 − nn� ·


F


n
, �6�

where �� and �n are appropriate kinetic constants and the
factor 1−nn in Eq. �6� ensures that �n�2=1. For the initial
condition we take two flat smectic slabs with sinusoidal or-
der parameter profiles and layer normals identical to n± for
z
Lz /2 and z�Lz /2 �respectively�. Since we fixed � in-
stead of k0, the chirality is determined by minimizing FFrank
with respect to k0 as

k0 =
1

V
� dr�n · � � n� , �7�

which is calculated from the director configuration. In equi-
librium, it is a function of the temperature � and the twist
angle �: k0= f�� ,��. Inverting this relation, we can find the
equilibrium twist angle for given temperature and chirality as
�=g�� ,k0�. We use the parameter set �=−0.02, g=1, B
=0.2, K=0.02, and d=16 with the unit mesh size �x=1,
unless otherwise stated. For this choice, the correlation
length and the penetration length are �=0.44d and �=0.80d
so that the conditions Lz /2�� ,� and 	
1/	2 are satisfied.
The kinetic coefficients are chosen as ��=�n=0.1 with the
time step �t=1. Our criterion of equilibration is that the free
energy difference Fi�t+ t0�−Fi�t� is lower than 0.01% of the
characteristic amount of Fi " i, where the index i indicates
each free energy component and the relaxation time t0 is
determined by the fitting F�t��exp�−t / t0�+const at the early
stage t�2000. To prevent a trapping by local free energy
minima, we also added a small noise which is gradually re-
duced to zero. The equilibrated grain boundary structure for
�=50° is shown in Fig. 2.

We first compare the obtained layer structure with
Scherk’s first surface. The deviation from the minimal sur-
face can be estimated using the spatial average of H2:

FIG. 1. Single twist-grain-boundary structure. The broken and
gray lines indicate the parallel screw dislocations and the smectic
layers in the grain boundary plane �z=0�. The solid and dotted lines
are the layers at z→ ±�, respectively.

FIG. 2. Snapshot of the grain boundary structure at �=−0.02,
g=1, B=0.2, K=0.02, and �=50°. Plotted are the isosurface Re�
=0 and the director n �arrows�.
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�H2
 =
1

V
� dr H2 �8�

This measure has more direct physical meaning than the pre-
vious ones �13� because Eq. �8� is proportional to the bend-
ing elastic energy of layers. The mean curvature is calculated
through the layer normal m as H=� ·m, while m is calcu-
lated through the phase � of the smectic order parameter �
as m=�� / ����. In this way we can compute the mean cur-
vature at every point, which is very important for averaging
out the effect of mesh size.

The twist-angle dependence of the layer curvature is
shown in Fig. 3. For small �, the TGB layer is close to
Scherk’s first surface, agreeing with the analytical calcula-
tion �8�. However, �H2
 grows roughly linearly as a function
of �. For large �, the mean curvature is not small even
compared to the inverse layer thickness 1/d.

To understand the origin of the deviation, we note that the
layer bending elasticity has a contribution from Frank elas-
ticity, through the coupling between � and n. To see this, it
would be instructive to rewrite the interaction term Fint in the
form

Fint =
B

2
� dr�i � ��� − ��������m − n� − �������� − q0�n�2.

�9�

The first term homogenizes the order parameter amplitude,
the second term locks the layer normal m and the director n,
and the third term is the layer compression term that adjusts
the layer thickness. Thus the coupling between � and n is
divided into the locking and layer compression terms. If the
locking effect is dominant, m and n will be identical. Then
the splay term in the Frank elastic energy is converted
into the layer bending energy, as �K /2��dr�� ·n�2

= �K /2��dr H2. However, if the locking is weak compared to
the twist free energy ��k0� and/or the layer compression en-
ergy, an unlocking of m and n should occur. Then the splay
term contributes less to the effective layer bending energy
and �H2
 can easily deviate from zero.

As � increases, the factor �����−q0�2 in the layer com-
pression energy greatly increases �Fig. 4�b��, as it is approxi-
mated as q0

2�cos�� /2�−1�2 at the grain boundary core. Thus
the frustration between layer compression and locking terms

increases and leads to the unlocking of m and n. The spa-
tially averaged angle between them is over �20° for the
standard parameter set and �=90°. Note that the amplitude
��� near the grain boundary decreases as � increases at
higher temperature, as shown in Fig. 5. However, it does not
affect the ratio between the two free energy contributions and
hence is not a major cause of the deviation from the minimal
surface.

We further tested the role of director in two ways: �i� by
decoupling the director from � by turning off the Frank
elasticity, and �ii� by adding an extra locking term D�m
−n�2 to the free energy. In the unlocking limit �i�, �H2
 in-
creased about five times, which proves Frank elasticity to be
the major contribution to the layer bending rigidity. With �ii�,
�H2
 is reduced to one-half for a weak extra locking �which
reduces ��m−n�2
 by only 12%�. These results confirm that
the director unlocking plays an important role in the devia-
tion from the minimal surface.

Next we look at the temperature dependence. While we
varied the temperature � �roughly proportional to ����2
� by a
factor of ten, the deviation �H2
 showed only a small change.
This also supports that the deviation is controlled mainly by
the ratio between the above two free energy contributions. At

FIG. 3. The spatial average of the squared and dimensionless
mean curvature ��Hd�2
 versus the twist angle � at �= ��� −0.005,
��� −0.02, and ��� −0.05.

FIG. 4. �a� Twist-angle dependence of ��� the dimensionless
locking energy f l= �g / �������������m−n�d�2 and ��� the dimen-
sionless layer compression energy fc= �g / �������0������−q0�d�2.
�b� The layer compression factor fc0= �cos�� /2�−1�2 �see text�.

FIG. 5. The squared and dimensionless order parameter
���2 / ���� /g� in the cross section y=const at �=−0.005 and �= �a�
30°, �b� 60°, and �c� 90°. The contour lines are drawn at 0.1, 0.2,¼,
1.0. For large �, a significant melting of the smectic order is ob-
served even far from the dislocation cores, while it is not seen at
lower temperature.
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high temperature, the twist free energy becomes important
compared to the locking term, which is reduced due to the
prefactor ���. The deviation for a large twist angle is larger
for higher temperature. This can be explained by the melting
of the smectic order in the grain boundary, not only near the
center of the dislocation core �Fig. 5�.

Next, we compare the obtained layer structure with both
Scherk’s first surface and the LSD. To this end, we use the
measure ��m−mr�2
, where mr=��r / ���r� is the normal
vector of the reference surface defined by the phase function
�10�

�r = tan−1�tan�x sin
�

2
�tanh z̃� + y cos

�

2
−

�

2
, �10�

where z̃= �z sin �� /2 for Scherk’s first surface and z̃
=z sin�� /2� for the LSD. The resultant deviations
��m−mScherk�2
 and ��m−mLSD�2
 are plotted in Fig. 6. We see

that the LSD gives a better approximation of the TGB struc-
ture for a large twist angle, while the difference is negligible
for small �.

Finally let us compare our results with the TGB structure
in twisted layers of block copolymer melts �13�. In block
copolymer melts, deviation of the intermaterial dividing the
surface from the minimal surface is caused by the packing
frustration �19�, which corresponds to the layer compression
energy of liquid crystals. A self-consistent field-theoretic cal-
culation �13� shows that the LSD is a better model than
Scherk’s first surface, as in our case. However, the measure
of deviation in �13� has the dimension of the squared layer
displacement, which causes an apparent rise of the deviation
as �→0. To compare with our results, their measure must be
multiplied by the square of the characteristic wave number,
proportional to sin2�� /2���2. Then the deviation from the
LSD and minimal surfaces should converge to 0 as �→0.

In summary, we have investigated the structure of a single
grain boundary in the TGB phase. Sizable deviations from
the model surfaces are obtained and interpreted by increase
of the layer compression energy and unlocking of the direc-
tor and the layer normal. At higher temperature and large
twist angle, the smectic order melts even far from the dislo-
cation core. We hope that the core structure may be observed
experimentally, using the same kind of technique as used in
the study of defect cores in the smectic phase �20�. We plan
to simulate the NL* phase in the future, for which the weak-
ening of effective layer bending elasticity may have some
significant effect.

We are grateful to Toshihiro Kawakatsu, Helmut Brand,
Jun-ichi Fukuda, and Tomonari Dotera for various helpful
comments and discussions.
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