3 research outputs found

    Badenian evolution of the Central Paratethys Sea : paleogeography, climate and eustatic sea-level changes

    Get PDF
    The Miocene Central Paratethys Sea covered wide areas of the Pannonian Basin System, bordered by the mountain chains of the Alps, Carpathians and Dinarides. The epicontinental sea spread not only in the back-arc basin area, but flooded even the Alpine-Carpathian Foredeep, situated along the front of gradually uplifting mountains. The Early Badenian (early Langhian) transgressions from the Mediterranean toward the Central Paratethys realm, via Slovenia and northern Croatia (Transtethyan Trench Corridor or Trans Dinaride Corridor) flooded the Pannonian Basin and continued along straits in the Carpathian Chain into the Carpathian Foredeep. The isolation of eastern parts of the Central Paratethys at the end of this period (late Langhian) resulted in the "Middle Badenian" salinity crisis. Thick evaporite sediments, above all halite and gypsum were deposited in the Transcarpathian Basin, Transylvanian Basin and Carpathian Foredeep. During the Late Badenian (early Serravallian), the latest full marine flooding covered the whole back-arc basin and a great part of the foredeep. The main problem is to create a model of sea connections during that time, because some authors consider the western Transtethyan Trench Corridor (Trans Dinaride Corridor) closed and there is no evidence to prove a supposed strait towards the Eastern Mediterranean. A proposed possibility is a connection towards the Konkian Sea of the Eastern Paratethys. The Badenian climate of the Central Paratethys realm can be characterized as fairly uniform, reflecting the stable subtropical conditions of the Miocene Climatic Optimum. No considerable changes in terrestrial ecosystems were documented. Nevertheless, evolution of steep landscape associated with rapid uplift of the East Alpine and Western Carpathian mountain chains (including high stratovolcanoes) caused development of vertical zonation of dry land and consequently close occurrence of different vegetation zones in a relatively small distance during this time. In the Central Paratethys Sea a slight N-S climatic gradient seems to be expressed already from the Early Badenian, but a biogeographic differentiation between basins in the North and South starts to become more prominent first during the Late Badenian, when a moderate cooling of the seawater can also be documented. The Late Badenian sea-level highstand coincides with the appearance of stress factors such as stratification of the water column and hypoxic conditions at the basin bottom in the whole area. Taking into account all bioevents and changes of paleogeography in the Central Paratethys realm, we can very roughly correlate the Early (and "Middle") Badenian with the eustatic sea-level changes of TB 2.3, TB 2.4 or Bur5/Lan1, Lan2/Ser1 and the Late Badenian with TB 2.5 or Ser2 cycles (sensu Haq et al. 1988; Hardenbol et al. 1998). Generally, we can assign the Early Badenian transgressions to be controlled by both, tectonics (induced mainly by back-arc basin rifting) and eustacy, followed by forced regression. The Late Badenian transgression and regression were dominantly controlled by sea-level changes inside the Central Paratethys realm

    Cretaceous—Quaternary tectonic evolution of the Tatra Mts (Western Carpathians): constraints from structural, sedimentary, geomorphological, and fission track data

    No full text
    The Tatra Mts area, located in the northernmost part of Central Western Carpathians on the border between Slovakia and Poland, underwent a complex Alpine tectonic evolution. This study integrates structural, sedimentary, and geomorphological data combined with fission track data from the Variscan granite rocks to discuss the Cretaceous to Quaternary tectonic and landscape evolution of the Tatra Mts. The presented data can be correlated with five principal tectonic stages (TS), including neotectonics. TS-1 (~95-80 Ma) is related to mid-Cretaceous nappe stacking when the Tatric Unit was overlain by Mesozoic sequences of the Fatric and Hronic Nappes. After nappe stacking the Tatric crystalline basement was exhumed (and cooled) in response to the Late Cretaceous/Paleogene orogenic collapse followed by orogen-parallel extension. This is supported by 70 to 60 Ma old zircon fission track ages. Extensional tectonics were replaced by transpression to transtension during the Late Paleocene to Eocene (TS-2; ~80-45 Ma). TS-3 (~45-20 Ma) is documented by thick Oligocene-lowermost Miocene sediments of the Central Carpathian Paleogene Basin which kept the underlying Tatric crystalline basement at elevated temperatures (ca. > 120 °C and < 200 °C). The TS-4 (~20-7 Ma) is linked to slow Miocene exhumation rate of the Tatric crystalline basement, as it is indicated by apatite fission track data of 9-12 Ma. The final shaping of the Tatra Mts has been linked to accelerated tectonic activity since the Pliocene (TS-5; ~7-0 Ma)
    corecore