246 research outputs found

    Backward conditioning: A new program specialisation technique and its application to program comprehension

    Get PDF
    This paper introduces backward conditioning. Like forward conditioning (used in conditioned slicing), backward conditioning consists of specialising a program with respect to a condition inserted into the program. However, whereas forward conditioning deletes statements which are not executed when the initial state satisfies the condition, backward conditioning deletes statements which cannot cause execution to enter a state which satisfies the condition. The relationship between backward and forward conditioning is reminiscent of the relationship between backward and forward slicing. Forward conditioning addresses program comprehension questions of the form `what happens if the program starts in a state satisfying condition c?`, whereas backward conditioning addresses questions of the form `what parts of the program could potentially lead to the program arriving in a state satisfying condition c?' The paper illustrates the use of backward conditioning as a program comprehension assistant and presents an algorithm for constructing backward conditioned programs

    Anchoring of proteins to lactic acid bacteria

    Get PDF
    The anchoring of proteins to the cell surface of lactic acid bacteria (LAB) using genetic techniques is an exciting and emerging research area that holds great promise for a wide variety of biotechnological applications. This paper reviews five different types of anchoring domains that have been explored for their efficiency in attaching hybrid proteins to the cell membrane or cell wall of LAB. The most exploited anchoring regions are those with the LPXTG box that bind the proteins in a covalent way to the cell wall. In recent years, two new modes of cell wall protein anchoring have been studied and these may provide new approaches in surface display. The important progress that is being made with cell surface display of chimaeric proteins in the areas of vaccine development and enzyme- or whole-cell immobilisation is highlighted.

    β1 Integrin-Mediated Adhesion Signalling Is Essential for Epidermal Progenitor Cell Expansion

    Get PDF
    Background: There is a major discrepancy between the in vitro and in vivo results regarding the role of b1 integrins in the maintenance of epidermal stem/progenitor cells. Studies of mice with skin-specific ablation of b1 integrins suggested that epidermis can form and be maintained in their absence, while in vitro data have shown a fundamental role for these adhesion receptors in stem/progenitor cell expansion and differentiation. Methodology/Principal Findings: To elucidate this discrepancy we generated hypomorphic mice expressing reduced b1 integrin levels on keratinocytes that developed similar, but less severe defects than mice with b1-deficient keratinocytes. Surprisingly we found that upon aging these abnormalities attenuated due to a rapid expansion of cells, which escaped or compensated for the down-regulation of b1 integrin expression. A similar phenomenon was observed in aged mice with a complete, skin-specific ablation of the b1 integrin gene, where cells that escaped Cre-mediated recombination repopulated the mutant skin in a very short time period. The expansion of b1 integrin expressing keratinocytes was even further accelerated in situations of increased keratinocyte proliferation such as wound healing. Conclusions/Significance: These data demonstrate that expression of b1 integrins is critically important for the expansion of epidermal progenitor cells to maintain epidermal homeostasis

    Assessment of factors associated with complete immunization coverage in children aged 12-23 months: a cross-sectional study in Nouna district, Burkina Faso

    Get PDF
    This study identifies specific factors associated with immunization status in Nouna health district (Burkina Faso) in order to advance improved intervention strategies in this district and in those with similar environmental and social contexts. While comprehensive communication may improve understanding about immunization, local interventions should also take into account religious specificities and critical economic periods. Communication problems need to be examined; for instance, many respondents did not understand what the health workers wanted; and or they assumed their child was already totally immunized. Particular approaches that take into consideration local distinctions need to be applied

    Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process

    Get PDF
    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater

    Homocysteine Levels in Chronic Gastritis and Other Conditions: Relations to Incident Cardiovascular Disease and Dementia

    Get PDF
    Background Homocysteine levels in circulation are determined by several factors and hyperhomocysteinemia is reportedly associated with cardiovascular diseases and dementia. The aim of this study is to determine the relation of chronic gastritis and other conditions to homocysteine levels and their relation to incident cardiovascular diseases and dementia. Methods An adult population-based cohort (N = 488) was screened for H. pylori infection, gastro-duodenitis (endoscopic biopsies), disease history, and lifestyle factors. Blood samples were analyzed for pepsinogen I and II (gastric function), vitamin B12, folate, homocysteine, and cystatin C (renal function). The methylenetetrahydrofolate reductase C677T polymorphism reportedly associated with hyperhomocysteinemia was analyzed by pyrosequencing. Incident cardiovascular diseases and dementia were monitored during a median follow-up interval of 10 years. Results At baseline, there was a positive relation of S-homocysteine to male gender, age, S-cystatin C, methylenetetrahydrofolate reductase 677TT genotype and atrophic gastritis. During follow-up, cardiovascular diseases occurred in 101/438 and dementia in 25/488 participants, respectively. Logistic regression analysis (adjusting for gender, age at baseline, follow-up interval, BMI, smoking, alcohol consumption, NSAID use, P-cholesterol, and P-triglycerides) showed an association of S-homocysteine higher than 14.5 μmol/l to cardiovascular diseases (OR 2.05 [95% c.i. 1.14–3.70]), but not to dementia overall. Conclusions Gender, age, vitamin B12, folate, renal function, atrophic gastritis and the methylenetetrahydrofolate 677TT genotype were significant determinants of homocysteine levels, which were positively related to incident cardiovascular diseases

    The Human Gonadotropin Releasing Hormone Type I Receptor Is a Functional Intracellular GPCR Expressed on the Nuclear Membrane

    Get PDF
    The mammalian type I gonadotropin releasing hormone receptor (GnRH-R) is a structurally unique G protein-coupled receptor (GPCR) that lacks cytoplasmic tail sequences and displays inefficient plasma membrane expression (PME). Compared to its murine counterparts, the primate type I receptor is inefficiently folded and retained in the endoplasmic reticulum (ER) leading to a further reduction in PME. The decrease in PME and concomitant increase in intracellular localization of the mammalian GnRH-RI led us to characterize the spatial distribution of the human and mouse GnRH receptors in two human cell lines, HEK 293 and HTR-8/SVneo. In both human cell lines we found the receptors were expressed in the cytoplasm and were associated with the ER and nuclear membrane. A molecular analysis of the receptor protein sequence led us to identify a putative monopartite nuclear localization sequence (NLS) in the first intracellular loop of GnRH-RI. Surprisingly, however, neither the deletion of the NLS nor the addition of the Xenopus GnRH-R cytoplasmic tail sequences to the human receptor altered its spatial distribution. Finally, we demonstrate that GnRH treatment of nuclei isolated from HEK 293 cells expressing exogenous GnRH-RI triggers a significant increase in the acetylation and phosphorylation of histone H3, thereby revealing that the nuclear-localized receptor is functional. Based on our findings, we conclude that the mammalian GnRH-RI is an intracellular GPCR that is expressed on the nuclear membrane. This major and novel discovery causes us to reassess the signaling potential of this physiologically and clinically important receptor

    Investigating Bacterial Sources of Toxicity as an Environmental Contributor to Dopaminergic Neurodegeneration

    Get PDF
    Parkinson disease (PD) involves progressive neurodegeneration, including loss of dopamine (DA) neurons from the substantia nigra. Select genes associated with rare familial forms of PD function in cellular pathways, such as the ubiquitin-proteasome system (UPS), involved in protein degradation. The misfolding and accumulation of proteins, such as α-synuclein, into inclusions termed Lewy Bodies represents a clinical hallmark of PD. Given the predominance of sporadic PD among patient populations, environmental toxins may induce the disease, although their nature is largely unknown. Thus, an unmet challenge surrounds the discovery of causal or contributory neurotoxic factors that could account for the prevalence of sporadic PD. Bacteria within the order Actinomycetales are renowned for their robust production of secondary metabolites and might represent unidentified sources of environmental exposures. Among these, the aerobic genera, Streptomyces, produce natural proteasome inhibitors that block protein degradation and may potentially damage DA neurons. Here we demonstrate that a metabolite produced by a common soil bacterium, S. venezuelae, caused DA neurodegeneration in the nematode, Caenorhabditis elegans, which increased as animals aged. This metabolite, which disrupts UPS function, caused gradual degeneration of all neuronal classes examined, however DA neurons were particularly vulnerable to exposure. The presence of DA exacerbated toxicity because neurodegeneration was attenuated in mutant nematodes depleted for tyrosine hydroxylase (TH), the rate-limiting enzyme in DA production. Strikingly, this factor caused dose-dependent death of human SH-SY5Y neuroblastoma cells, a dopaminergic line. Efforts to purify the toxic activity revealed that it is a highly stable, lipophilic, and chemically unique small molecule. Evidence of a robust neurotoxic factor that selectively impacts neuronal survival in a progressive yet moderate manner is consistent with the etiology of age-associated neurodegenerative diseases. Collectively, these data suggest the potential for exposures to the metabolites of specific common soil bacteria to possibly represent a contributory environmental component to PD

    A Mitosis Block Links Active Cell Cycle with Human Epidermal Differentiation and Results in Endoreplication

    Get PDF
    How human self-renewal tissues co-ordinate proliferation with differentiation is unclear. Human epidermis undergoes continuous cell growth and differentiation and is permanently exposed to mutagenic hazard. Keratinocytes are thought to arrest cell growth and cell cycle prior to terminal differentiation. However, a growing body of evidence does not satisfy this model. For instance, it does not explain how skin maintains tissue structure in hyperproliferative benign lesions. We have developed and applied novel cell cycle techniques to human skin in situ and determined the dynamics of key cell cycle regulators of DNA replication or mitosis, such as cyclins E, A and B, or members of the anaphase promoting complex pathway: cdc14A, Ndc80/Hec1 and Aurora kinase B. The results show that actively cycling keratinocytes initiate terminal differentiation, arrest in mitosis, continue DNA replication in a special G2/M state, and become polyploid by mitotic slippage. They unambiguously demonstrate that cell cycle progression coexists with terminal differentiation, thus explaining how differentiating cells increase in size. Epidermal differentiating cells arrest in mitosis and a genotoxic-induced mitosis block rapidly pushes epidermal basal cells into differentiation and polyploidy. These observations unravel a novel mitosis-differentiation link that provides new insight into skin homeostasis and cancer. It might constitute a self-defence mechanism against oncogenic alterations such as Myc deregulation

    Melanoma Spheroids Grown Under Neural Crest Cell Conditions Are Highly Plastic Migratory/Invasive Tumor Cells Endowed with Immunomodulator Function

    Get PDF
    International audienceBACKGROUND: The aggressiveness of melanoma tumors is likely to rely on their well-recognized heterogeneity and plasticity. Melanoma comprises multi-subpopulations of cancer cells some of which may possess stem cell-like properties. Although useful, the sphere-formation assay to identify stem cell-like or tumor initiating cell subpopulations in melanoma has been challenged, and it is unclear if this model can predict a functional phenotype associated with aggressive tumor cells. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the molecular and functional phenotypes of melanoma spheroids formed in neural crest cell medium. Whether from metastatic or advanced primary tumors, spheroid cells expressed melanoma-associated markers. They displayed higher capacity to differentiate along mesenchymal lineages and enhanced expression of SOX2, NANOG, KLF4, and/or OCT4 transcription factors, but not enhanced self-renewal or tumorigenicity when compared to their adherent counterparts. Gene expression profiling attributed a neural crest cell signature to these spheroids and indicated that a migratory/invasive and immune-function modulating program could be associated with these cells. In vitro assays confirmed that spheroids display enhanced migratory/invasive capacities. In immune activation assays, spheroid cells elicited a poorer allogenic response from immune cells and inhibited mitogen-dependent T cells activation and proliferation more efficiently than their adherent counterparts. Our findings reveal a novel immune-modulator function of melanoma spheroids and suggest specific roles for spheroids in invasion and in evasion of antitumor immunity. CONCLUSION/SIGNIFICANCE: The association of a more plastic, invasive and evasive, thus a more aggressive tumor phenotype with melanoma spheroids reveals a previously unrecognized aspect of tumor cells expanded as spheroid cultures. While of limited efficiency for melanoma initiating cell identification, our melanoma spheroid model predicted aggressive phenotype and suggested that aggressiveness and heterogeneity of melanoma tumors can be supported by subpopulations other than cancer stem cells. Therefore, it could be constructive to investigate melanoma aggressiveness, relevant to patients and clinical transferability
    corecore