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Abstract 

This paper introduces backward conditioning. Like for- 
ward conditioning (used in conditioned slicing), backward 
conditioning consists of specialising a program with respect 
to a condition inserted into the program. 

However, whereas forward conditioning deletes state- 
ments which are not executed when the initial state satis- 
fies the condition, backward conditioning deletes statements 
which cannot cause execution to enter a state which satis- 
fies the condition. The relationship between backward and 
forward conditioning is reminiscent of the relationship be- 
tween backward and forward slicing. 

Forward conditioning addresses program comprehen- 
sion questions of the form ‘what happens if the program 
starts in a state satisfjring condition c?’, whereas backward 
conditioning addresses questions of the form ‘what parts of 
the program could potentially lead to the program arriving 
in a state satisfLing condition c?’. 

The paper illustrates the use of backward conditioning 
as a program comprehension assistant and presents an al- 
gorithm for  constructing backward conditioned programs. 

1. Introduction 

Program comprehension often starts with a programmer 
inspecting source code, asking questions such as 

”What happens when the initial value of Balance 

is less than zero?’ 

and 

“How could this program get into a state where 
temperature is greater than 100 at this point?” 

or constructing hypotheses such as 

“This program could never get to this point and 
have the file-lock flag set to true.” 

These questions, and their answers, are important aspects of 
the comprehension activity. 

Previous work on conditioned slicing [4, 5, 71 has con- 
sidered the way in which such questions can be investigated. 
This work helps to answer comprehension questions which 
solely concem propagation of state information in a forward 
direction from initial states. Conditioned slicing would as- 
sist in answering questions like the first of the three above, 
but not the second two. 

Unfortunately, many questions concem intermediate and 
final states in which information needs to be propagated 
backwards from the condition. Traditional conditioned slic- 
ing is a forward-propagation technique. This paper intro- 
duces a counterpart to this traditional conditioning, termed 
backward conditioning. Hereinafter, the condition used in 
the traditional approach to conditioned slicing will be re- 
ferred to as a ‘forward condition’anda condition that is used 
to eliminate program code that proceeds will be refered to 
as a ‘backward condition’. 

Constructing a slice with respect to a backward condi- 
tion, p consists of removing statements which cannot lead 
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the program into a state which satisfies p .  The code which 
remains is the slice. It contains code which potentially 
could lead the program into a state which satisfies p. 

To illustrate consider the simple example fragment in 
Figure 1. The program is an idealized fragment of code 
concerned with bank account management. The program- 
mer might be interested to see which parts of the program 
could finish in a state where the account balance (bal) was 
negative. That is, the condition of interest is 

bal < 0 

and the point of interest is the end of the fragment. Con- 
structing a slice with respect to the backward condition 
yields the slice depicted in the right-hand column of Fig- 
ure 1. In this case, backward conditioning has removed all 
but one assignment to bal, indicating that only this remain- 
ing assignment can lead the program into a state where bal 
is negative. In this way, backward conditioning assists the 
programmer by focusing attention on the statements which 
can potentially cause a situation of interest to arise within 
the program. 

A conditioned slice can be constructed with respect to a 
mixture of of conditions applied in the forward or backward 
direction. There is therefore a need for some convenient 
notation to denote a general conditioned slicing criterion. 
A condition that is to be applied in the forward direction, 
p ,  will be denoted by a downward pointing subscript arrow 
before the condition, contained within “ceiling” brackets, 
thus 4 rp1. This distinguishes it from a condition p to be 
applied in the backward direction, which will be denoted 
with an upward pointing superscript arrow, with the condi- 
tion contained within “floor” brackets, thus t LpJ . The ar- 
rows indicate the direction in which the condition is to be 
appled with respect to the program text, and the (optional) 
distinctive brackets aid disambiguation of the scope of the 
arrows in complex conditions. Furthermore, a condition (ei- 
ther forward or backward) can be inserted anywhere within 
the program (not just at the beginning of the code as with 
traditional conditioned slicing). Finally, there is no need to 
restrict oneself to a single condition. Therefore, the condi- 
tioned slicing criterion is generalised to a set of pairs. Each 
pair contains either 

0 A traditional ‘static’ criterion: a set of variables and 
point of interest or 

0 A condition/program point pair 

In their most general form the static part of the criteria 
also has a direction, following the introduction of forward 
static slicing [9], which mirrors backward slicing in much 
the same way as backward conditions mirror forward con- 
ditions. However, the focus of this paper is the introduction 

of backward conditions and their use in program compre- 
hension, so this possibility will not be explored further in 
the present paper. 

Using this generalised notation, the conditioned slicing 
criterion for the bank account program in Figure 1 would 
be denoted 

The rest of this paper is organised as follows. Section 2 
presents a simple case study to show how backward con- 
ditioning can be used in a program comprehension setting. 
Section 3 presents an algorithm for computing backward 
conditioned programs, based upon an augmentation of the 
ConSIT approach [SI. Section 4 describes the relationship 
between traditional slicing and backward and forward con- 
ditioning and Section 5 concludes. 

2. Application to Program Comprehension 

This section briefly illustrates the way backward condi- 
tions can be used to assist in program comprehension. Con- 
sider the simple tax calculation program in Figure 2, which 
was used in [SI to illustrate the use of forward conditions, 
implemented by the ConSIT system. 

The program represents a computation of tax codes and 
amounts of tax payable, including allowances for a United 
Kingdom citizen in the tax year April 1998 to April 1999. 
Each person has a personal allowance which is an amount 
of un-taxed income. The personal allowance depends upon 
the status of the person, reflected by the boolean variables 
blind, married and widowed and the integer variable age. 
There are three tax bands, for which tax is charged at the 
rates of lo%, 23% and 40%. The width of the 10% tax 
band is subject to the status of the person, while the 23% 
and 40% are fixed for all individuals. This set of taxation 
rules constitutes a govemmental ‘business system’, and the 
program in Figure 2 represents an attempt to capture these 
rules in program code. 

While forward conditions are helpful in understanding 
this program, backward conditions provide a useful addi- 
tional tool in the armory of program comprehension. 

For example, suppose that the programmer is interested 
in the personal allowance. The maximum personal al- 
lowance that any individual could obtain under the UK tax- 
ation rules in 1999 was E7360. Who was entitled to this 
allowance? Using backward conditioning the condition 

personal = 7360 

can be inserted at the end of the program. The variable of 
interest in this case is the final value of personal. There- 
fore the conditioned slicing criterion is 

{(‘[personal = 73 601, end), ({personal}, end)} 
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1 i f  (bal>O) 
2 i f  (babwdraw) 
3 ba l  = ba l  - wdraw 

else 
4 { gap = b a l  - wdraw; 
5 i f  (go ld (cus t )  & &  gap < top)  
6 
1 ba l  = 0; } 
8 e l s e  ba l  = b a l  - wdraw ; 

9 p r i n t f  ( "%d" ,ba l )  ; 

{ pinkzone = wdraw - ba l ;  

} 

Original 

1 i f  (bal>O) 
2 i f  (babwdraw) 

else 
{ gap = ba l  - wdraw; 4 

5 i f  (go ld (cus t )  C &  gap < top)  

8 e l s e  b a l  = b a l  - wdraw ; 

9 p r i n t f  ( "%d" ,ba l )  ; 

Result of backward conditioning 

1 

Figure 1. Backward conditioning on b a l  < 0 at line 9 

Slicing with respect to this criterion yields the slice 
in Figure 3. This program contains computations which 
could lead to the final value of the variable personal  being 
&7360. It removes all computation which cannot leave the 
program in this state. Therefore, the programmer can con- 
clude that the program will not award a personal allowance 
of E7360 unless the individual is blind and at least 75 years 
of age. 

In this way backward conditioning allows speculative 
hypotheses about the program's behaviour to be investi- 
gated. It does not, in general, answer these questions com- 
pletely, because the programmer still has some program 
code to consider. However, it assists the human by auto- 
matically removing portions of code which are not relevant 
to the question under consideration. 

Occasionally, the programmer will phrase a question 
about the execution as a backward condition, and will re- 
ceive a definitive answer. This happens when the slice 
is empty, revealing that the backward condition can never 
arise. This is helpful in asking questions which serve as 
'sanity checks'. For example, in the case of taxation, no in- 
dividual should (under the 1999 UK law) receive an overall 
income tax burden of 40% or more. This can be checked by 
appending to the end of the program backward condition, 

( t ax  >= incomeo * 40)/100 

where incomeo captures the original value of the variable 
income (i.e. the individual's gross income). This condition 
asserts that the amount of tax paid is at least 40% of the 
individual's gross income. Since this is not possible, condi- 
tioning the program with respect to this backward condition 
yields the empty program. More formally, the empty slice 
is obtained for the slicing criterion 

{ ( t l ( t ax  >= incomeo * 40)/10OJ,end), 
({tax}, end)} 

3. Computing Backward Conditioned Slices 

As with conventional forward slicing [4, 51, automated 
backward conditioning requires symbolic execution to- 
gether with automatic theorem proving. To eliminate irrele- 
vant paths, for each statement (or statement block) the algo- 
rithm has to determine whether all paths through that state- 
ment lead to the negation of the required condition. This 
is achieved by: (i) extending the notion symbolic execution 
so that a path which leads to the negation of the required 
condition(s) are given a distinguished value I; (ii) for each 
statement determining whether all paths lead to I, in which 
case the statement is irrelevant for the purpose of obtaining 
the required condition. 

Theorem proving is computationally expensive. To re- 
duce the number of theorems to be proved during backward 
conditioning, a practical system might slice the program 
first, perhaps using a default slicing criterion consisting of 
the variables mentioned in the required backwards condi- 
tion. 

Conceptually, the system is thus comprised of the fol- 
lowing components: 

1. Static Slicer 

2. Symbolic Executor 

3. Theorem Prover 

The slicer first eliminates statements on program depen- 
dence grounds. The symbolic executor and theorem prover 
essentially seek to eliminate additional statements on path- 
condition grounds: the symbolic executor provides a set of 
path-state pairs { ( ~ , , ~ ~ ) ,  . . . ,(~",~")} for each statement 
[5], and this information is used by the theorem prover to 
determine the relevant paths and statements. To simplify 
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main0 { 
int age, blind, widow, married, income; 
int personal, tax, t; 

scanf ("%d", &age) ; 
scanf ("%d", &blind) ; 
scanf ("%d", &married) ; 
scanf ("%d", &widow) ; 
scanf ("%d", &income) ; 

if (age>=75) personal = 5980; 
else if (age>=65) personal = 5720; 
else personal = 4335; 

if ((age>=65) 6 &  income>16800) { 
t = personal - ((income-16800)/2); 
if (t>4335) personal = t; 
else personal = 4335;) 

if (blind) personal = personal t 1380;  

if (married & &  age>=75) pcl0 = 6692; 
else if (married & &  (age>=65)) pcl0 = 6625; 
else if (married 1 I widow) pcl0 = 3470; 
else pcl0 = 1500; 

if (married & &  age>=65 & &  income>16800) { 
t = pclO-((income-l6800)/2); 
if (t>3470) pcl0 = t; else pcl0 = 3470;) 

if (income<=personal) tax = 0; 
else { 

income = income-personal; 
if (income<=pclO) tax = income/lO; 
else { 

tax = pc10/10; 
income = income-pcl0; 
if (income<=28000) 

else { 
tax = ((taxtincome)*23)/100; 

tax = ( (taxt28000) *23) /loo; 
income = income-28000; 
tax = ((taxtincome) *40)/100.;)}} 

if (!blind & &  !married & &  aget65) 
code = 'L'; 

else if (!blind & &  aget65 & &  married) 
code = 'H'; 

else if (age>=65 & &  aget75 & &  !married & &  !blind) 
code = 'P'; 

else if (age>=65 & &  aget75 & &  married & &  !blind) 
code = 'V' ; 

else code = 'T'; 
1 

Figure 2. UK Income Taxation Calculation Program 

the implementation, we can introduce the backward condi- 
tion p at line I, (+ IpJ , l ) ,  by way of a new program statement 
assertb ( p )  that is inserted at line 1. 

In order to determine whether a statement block s 
can contribute to obtaining the desired condition c, we 
need to determine all the execution paths X I , .  . . ,nn that 
pass through s, together with their related symbolic states 
01,. . . ,on. If every path g (1 5 k 5 n) through that state- 
ment block can be shown to lead to the negation of c, when 
evaluated in the corresponding state q, then that block can 
be coloured as being irrelevant for obtaining the desired 
condition. 

The algorithm for backward condition path reduction 
has the steps given below: 

1. Label statements. 

2. Find all execution paths and symbolic states. 

3. Associate each path with the labels of the statements 
on that path. 

4. Eliminate every statement which is not associated 
with any path that can support the required condition. 

The detail of each of these steps is as follows: 

1. Each statement (or statement block) is associated with a 
unique identifier (e.g. a line number).' 

2. The symbolic executor finds all of the possible symbolic 
execution paths through the program. The leaves of the 
execution "tree" for a conventional program are denoted 
by pairs of path conditions and symbolic states. The be- 
haviour of the symbolic executor is extended in such a 
way that paths where the required condition(s) are not 
obtained have the distinguished value I as their sym- 
bolic path-state? 

3. The leaves of the execution tree each correspond with 
the symbolic result of a possible path of execution. We 
associate each leaf of the execution tree with the set of 
statement identifiers that denote the statements that are 
executed on the corresponding path. 

'For the sake of simplicity, we talk of eliminating individual statements 
in this algorithm. However, it is generally better to consider eliminating 
statement blocks rather than individual statements, as this reduces the time 
complexity of the algorithm: the number of calls to the theorem prover is 
then determined by the number of symbolic execution paths, rather than 
the product of the number of statements and paths. 

2With a single backward condition, only statements leading up to the 
condition need be considered. Also, for the purpose of symbolic execution, 
different numbers of non-zero iterations of a terminating loop for can be 
considered as equivalent. 
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main() { 
int age, blind; 
int personal; 

scanf ("%d", &age) ; 
scanf ("%d", &blind) ; 
if (age>=75) personal = 5980; 
if (blind) personal = personal + 1380 ; 

1 
I J  

Figure 3. Highest Personal Allowance 

4. If all the paths through a statement (i.e. all of the paths 
which are associated with that statement's identifier) are 
I (that is, they can be shown not to support the required 
condition) then that statement can be eliminated. This 
has the effect of eliminating code that is on paths that 
can be shown to lead to the negation of the required con- 
dition. 

This implementation requires the incorporation of a the- 
orem prover into the symbolic executor. Currently, our 
implementation work is focused on the Stanford Validity 
Checker (SVC), which is able to reason effectively with 
arithmetic expressions and linear inequalities [3, 21, as well 
as the Isabelle, which is a more general purpose theorem 
prover [14, 15, 161. Both SVC and Isabelle have been suc- 
cessfully integrated with a Prolog-based symbolic executor 
and Java-based slicer (Espresso) [6] to achieve forward con- 
ditioned program slicing [5] .  Work is underway to extend 
the implementation to incorporate the backward condition- 
ing algorithm presented here. 

3.1. Example of Backward Conditioning 

Figure 4 is a simple example of a program containing a 
conditional which we will backward condition. Conditional 
expressions, such as those declared by assertb, have to be 
interpreted in the relevant (symbolic) state. A condition c 
occurring in the context generated by program p is evalu- 
ated in each of the symbolic states that arise on the various 
paths through p. If the expression n D (T is one of the path- 
state pairs generated by symbolic execution of p-where 7c 
is the path condition, and (3 is the corresponding symbolic 
state-then c is to be evaluated in symbolic state CL which 
we write Io(c), treating (T as a partial function from vari- 
ables to their symbolic values. Essentially this gives the 
interpretation of the program statement c in the state (3, as 
in ordinary state-based program semantics, except that here 
the state (T is a symbolic state. 

In order to perform backward conditioning, it is neces- 
sary to check, for each statement, whether there are any 
paths through that statement that might allow us to obtain 

the required condition. If all paths through a statement al- 
low us to demonstrate that the negation of the condition 
holds, then that statement can be deleted. 

Figure 5 plots key statements against the paths upon 
which they appear. For path-state (i), namely (a0 > 10) D 

(a = 2 0 ~ 0 ,  a0 = ao), to determine whether that path could 
lead to the satisfaction of the required condition, the ques- 
tion is whether: 

> 10 t- 7I(a=20q,,ao=u,3)(a < ao) 

where thesequent a I- b means that we can derive b given 
a. In this case, b is the negation of the condition a < a0 
asserted by the statement asser tb  (a  < a0 1 when evalu- 
ated in the appropriate symbolic state. If the sequent can 
be shown to be valid, then the path does not give rise to the 
required condition. If all paths through a given statement 
block do not give rise to the required condition, then the 
statements in that block can be elided. 

So, evaluating the backward condition in the final sym- 
bolic state on this path gives us: 

a0 > 10 I- 1(20ao < ao) 

which is valid. 
For path (ii) we have the following: 

ao >c 10 I- iZ(a=O,ao=.o) (a < ao) 

Performing the substitution, this gives us: 

a0 >' 10 I- 7(0 < ao) 

which is not valid. 

path (i): 
Summarising these proofs we have the following, for 

1. ao > 101- 7 $ = 2 0 ~ ~ , ~ ~ = 4 ( a  < ao) 

2. a0 > 1oI- 7(20ao < ao) 

3. valid 

and for path (ii): 

93 

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:29 from IEEE Xplore.  Restrictions apply.



program code 

main()  { 
int a; 
scanf{”%d“,  & a ] ;  

’ a0 = a; 

if ( a  > 10) I 
a = a * 20;  

] e l s e  { a  = 0; 

1 

a s s e r t b ( a  < ao) ;  

1 

comment 

This statement occurs on path (i) and (ii) below. At this point, the path 
condition is empty, and the symbolic state is a = ao, where a0 is a unique 
symbolic constant, standing for the unknown input value. We write this as 
T D  a = ao. 
Added to capture initial value of a. Path condition and symbolic state: 
TDa=ao ,ao  =a0 

This statement, call it A, only occurs on path (i), below. Path condition and 
symbolic state: a0 > 10 D a = 2 0 ~ 0 ,  a0 = ao 
This statement, call it B, occurs on path (ii), below. Path condition and 
symbolic state: ao 3 10 D a = 0, a0 = ao 
Path condition and symbolic states at this point: 
(i)ao> 1 0 ~ a = 2 0 a o , a 0  =a0 

(ii) a0 3 10Da = 0,ao = ao 
This statement has been added to state the condition of interest. In essence, 
it indicates that we are interested in determining which parts of the pro- 
gram are responsible for decreasing the value of variable a compared to its 
original input value, as recorded by a0 

Figure 4. A Simple Program and its Paths 

So executions along path (i), through statement ‘A’ (a = 

a * 20), definitely cannot allow the asserted condition to 
be true, but executions following path (ii), through state- 
ment ‘B’ (a = 0), might. As no computations along path 
(i) can satisfy the asserted condition, statements that are ex- 
clusive to that path can be eliminated. 

What if the condition had been a s s e r t b  ( a  > ao) ? For 
path (i) we would have the following derivation: 

2. a0 > 10 I- 4 2 0 a o  > ao) 

3. not valid 

2. a0 $ 10 I- l ( 0  < ao) 

3. not valid 

From this we can see that execution paths through state- 
ment ‘A’ make the condition true, and although execution 
paths through ‘B’ do not necessarily lead to the truth of the 
condition, they include computations in which the condition 
is true. Thus neither statement can be eliminated. 

4. Related Work 

Program slicing was introduced by Weiser [17, 191. The 
original intention of slicing was to assist in program debug- 
ging [ 131, but Weiser also empirically investigated slicing’s 
ability to assist program comprehension [ 181. Weiser’s slic- 
ing criterion consisted of a set of variables of interest V and 
a point of interest n within the original program. Statement.. 
which cannot affect the values of variables in V at n are re- 
moved to form the slice. 

For example, consider the program in section (a) of Fig- 
ure 6. Slicing this program with respect to the criterion 
( { x } , 8 )  yields the slice in section (b). Slicing in this way 
assist program comprehension by removing the computa- 
tion on y, allowing the programmer to focus on the compu- 
tation on x. 

Korel and Laski [ll] introduced dynamic slicing as 
a counterpart to Weiser’s original static formulation, and 
more recently investigated the use of dynamic slicing in pro- 
gram comprehension [ 121. The dynamic slicing criterion 
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i n t  a; s 
scanf{”%d“, &a}; 

( a  > 1 0 )  an 

I a s s e r t b i a  < ao); asser tb(a  < ao); 

Path (i): 
a0 > ~ O D  a = 20~0, a0 = ao 

Path (ii): 
ao;d 10Da=O,ao=ao 

Figure 5. Execution Paths Made Explicit 

augments the static criterion with a sequence of input val- 
ues. The dynamic criterion is thus a triple, (Z,V,n), where I 
is an input sequence and (V,n)  is the static slicing criterion. 

Conditioned slicing [4, 5, 71 augments Weiser’s tradi- 
tional static slicing criterion with a condition which cap- 
tures a set of initial program states of interest. This allows 
a programmer to further specialize a program by eliminat- 
ing statements which do not contribute to the computation 
of the variables of interest when the program is executed in 
one of the initial states of intere~t.~ 

The conditioned slicing criterion is thus a triple, (p ,V ,n )  
where p is some initial condition of interest and (V,n)  are 
the two components of the ‘static’ slicing criterion. For ex- 
ample, the conditioned slice of the original program in sec- 
tion (a) of Figure 6 for the criterion (x>O,{x},S) is shown 
in section (c) of the figure. This slice is also the dynamic 
slice for all input sequences in which the first element, x of 
the sequence satisfies the condition x > 0. 

Conditioned slicing is more useful for comprehension 
than either static or dynamic slices because it subsumes and 
generalizes both [4]. However, as has been demonstrated 
in the present paper, there are situations where it is useful 
to generalise the conditions used in conditioning a program, 
allowing both backward and forward conditions. This gen- 
eralization requires a notation which allows slicing criteria 
to contain an arbitrary number of both forward and back- 
ward conditions. Using this generalised notation, the slic- 
ing criterion for the traditional conditioned slice in section 
(c) of Figure 6 is reformulated as 

Forward conditioning assists the programmer by consid- 
ering the effect of propagating state information forward 
from a condition. This addresses questions of the form 

“what would happen if the program continued 
from here in some state satisfying p.” 

3Pr0gram conditioning exploits a form of feasible path analysis. This 
kind of analysis has also been used in the context of program testing [8 ,  IO]. 

However, the effect of backward conditioning is the mirror- 
image of that for forward conditioning. For example, sec- 
tion (d) of Figure 6 shows the effect of backward condition- 
ing the original program in section (a) with respect to the 
condition {(tlx>OJ),S), ({x},S)}. This slice removes code 
which cannot leave the program in a final state satisfying 
x>o. 

Backward conditioning assists the programmer by con- 
sidering the effect of propagating state information back- 
ward from a condition. This addresses questions of the form 

“how could the program have arrived here in 
some state satisfying p.” 

Of course, the generalisation presented here allows 
for both forms of condition to be combined. For 
example, consider the conditioned slicing criterion 
{(~~~~=oJ),8),(~~x~0~,1),({~},S)}. For this criterion the 
slice is the empty program, revealing that it is impossible 
for the program in Figure 6 to start off with x being positive 
and finish up with it being negative. 

In the example of Figure 4, rather than delete the pro- 
gram statement, it might be more informative to colour it (or 
display it ‘greyed out’) [l]. If this idea of colouring state- 
mens is adopted, then the backward condition can be more 
informative even in the subsequent example where the con- 
dition is changed to a > ao: colours can be used to indicate 
that when a particular statement is executed, the backward 
condition will always be true-the then part of the condi- 
tional in the second example-and when the status of the 
backward condition is contingent-as with the else part of 
the conditional in both of these examples. 

It may be appropriate to aim to remove irrelevant state- 
ments from within a path, rather than merely eliminate ir- 
relevant paths. One way this can be achieved is by using 
counter-factual reasoning. For each statement we symboli- 
cally execute the program with that statement removed, and 
see whether we can show that the variables of interest will 
have the same value compared with the original program. If 
so, then that statement may safely be removed. Essentially 
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1 scanf ("%d", &x); 
2 y=2*x; 
3 if (y>x) 
4 { x=xtl; 
5 Y=Y*Y;} 

7 y=y-x;} 

else 
6 { x=x*2; 

8 printf("%d",x); 
(a) Original 

1 scanf("%d",&x); 
2 y=2*x; 
3 if (y>x) 
4 x=xtl; 

else 
6 x=x*2; 

1 scanf("%d",&x); 
2 y=2*x; 
3 if (y>x) 
4 x=xtl; 

(b) slice on ({x},8) 

1 scanf ("%d", &x); 
2 y=2*x; 
3 if (y>x) 

(c) Conditionedon r[x>Ol 

else 
6 x=x*2; 

(d) Conditioned on f l x>O I 

Figure 6. Comparison of forward and backward conditioning 

this is semantic slicing. This is a very expensive analysis 
and in most cases standard static slicing will achieve results 
that are almost as good much more cheaply. 

5. Conclusions and Future Work 

This paper introduces a new program specialisation tech- 
nique call 'backward conditioning', a counterpart to for- 
ward conditioning, used in conditioned program slicing. 

It is argued that backward conditioning is useful as a sup- 
porting technology in program comprehension. It allows a 
programmer to explore the answer to questions such as 

"How could the program reach this point with a 
negative value for x?' 

and 

"Which statements could make x equal y at this 
point?' 

Backward conditioning propagates state information 
backward from the condition point to delete statemenb 
which could not cause execution to satisfy the condition, 
wherea$ forward conditioning propagates state information 
forward from the condition to delete statemen& which could 
not be executed were the condition to be satisfied. In this 
way backward conditioning provides a complement to tra- 
ditional forward conditioning, which allows questions like 

"Which statements would have been executed 
were x to equal y at this point?' 

or 

"What happens if execution continues from this 
point with a negative value for x?' 

It would be interesting to combine backward and forward 
conditioning and backward and forward slicing into a single 
unified program analysis technique. This would potentially 

create a powerful and highly general technique for program 
specialisation, which would allow the programmer to ex- 
plore the answer to sophisticated questions about program 
behaviour as a part of program comprehension activity. This 
combination of backward and forward conditioning remains 
a problem for future work. 
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