
Backward Conditioning: a new program specialisation technique and its
application to program comprehension

Chris Fox
King’s College

University of London
Strand

London WC2R 2LS
United Kingdom

Tel: +44 (0)20 7848 2694
Fax: +44 (0)20 7848 2851
foxcj@dcs.kcl.ac.uk

Mark Harman and Rob Hierons
Brunel University

Uxbridge
Middlesex
UB8 3PH

United Kingdom
Tel: +44 (0) 1895 274 000
Fax: +44 (0) 1895 25 1 686

mark.harman@brunel.ac.uk

Sebastian Danicic
Goldsmiths College

University of London
New Cross

London SE14 6NW
United Kingdom

Tel: +44 (0)20 7919 7868
Fax: +44 (0)20 7919 7853

sebastian@mcs.gold.ac.uk

Keywords: Conditioned program slicing, program specialisation, path condition analysis

Abstract

This paper introduces backward conditioning. Like for-
ward conditioning (used in conditioned slicing), backward
conditioning consists of specialising a program with respect
to a condition inserted into the program.

However, whereas forward conditioning deletes state-
ments which are not executed when the initial state satis-
fies the condition, backward conditioning deletes statements
which cannot cause execution to enter a state which satis-
fies the condition. The relationship between backward and
forward conditioning is reminiscent of the relationship be-
tween backward and forward slicing.

Forward conditioning addresses program comprehen-
sion questions of the form ‘what happens if the program
starts in a state satisfjring condition c?’, whereas backward
conditioning addresses questions of the form ‘what parts of
the program could potentially lead to the program arriving
in a state satisfLing condition c?’.

The paper illustrates the use of backward conditioning
as a program comprehension assistant and presents an al-
gorithm for constructing backward conditioned programs.

1. Introduction

Program comprehension often starts with a programmer
inspecting source code, asking questions such as

”What happens when the initial value of Balance

is less than zero?’

and

“How could this program get into a state where
temperature is greater than 100 at this point?”

or constructing hypotheses such as

“This program could never get to this point and
have the file-lock flag set to true.”

These questions, and their answers, are important aspects of
the comprehension activity.

Previous work on conditioned slicing [4, 5, 71 has con-
sidered the way in which such questions can be investigated.
This work helps to answer comprehension questions which
solely concem propagation of state information in a forward
direction from initial states. Conditioned slicing would as-
sist in answering questions like the first of the three above,
but not the second two.

Unfortunately, many questions concem intermediate and
final states in which information needs to be propagated
backwards from the condition. Traditional conditioned slic-
ing is a forward-propagation technique. This paper intro-
duces a counterpart to this traditional conditioning, termed
backward conditioning. Hereinafter, the condition used in
the traditional approach to conditioned slicing will be re-
ferred to as a ‘forward condition’anda condition that is used
to eliminate program code that proceeds will be refered to
as a ‘backward condition’.

Constructing a slice with respect to a backward condi-
tion, p consists of removing statements which cannot lead

89
0-7695-1 131-7/01 $10.00 0 2001 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/335979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:foxcj@dcs.kcl.ac.uk
mailto:mark.harman@brunel.ac.uk
mailto:sebastian@mcs.gold.ac.uk

the program into a state which satisfies p . The code which
remains is the slice. It contains code which potentially
could lead the program into a state which satisfies p.

To illustrate consider the simple example fragment in
Figure 1. The program is an idealized fragment of code
concerned with bank account management. The program-
mer might be interested to see which parts of the program
could finish in a state where the account balance (bal) was
negative. That is, the condition of interest is

bal < 0

and the point of interest is the end of the fragment. Con-
structing a slice with respect to the backward condition
yields the slice depicted in the right-hand column of Fig-
ure 1. In this case, backward conditioning has removed all
but one assignment to bal, indicating that only this remain-
ing assignment can lead the program into a state where bal
is negative. In this way, backward conditioning assists the
programmer by focusing attention on the statements which
can potentially cause a situation of interest to arise within
the program.

A conditioned slice can be constructed with respect to a
mixture of of conditions applied in the forward or backward
direction. There is therefore a need for some convenient
notation to denote a general conditioned slicing criterion.
A condition that is to be applied in the forward direction,
p , will be denoted by a downward pointing subscript arrow
before the condition, contained within “ceiling” brackets,
thus 4 rp1. This distinguishes it from a condition p to be
applied in the backward direction, which will be denoted
with an upward pointing superscript arrow, with the condi-
tion contained within “floor” brackets, thus t LpJ . The ar-
rows indicate the direction in which the condition is to be
appled with respect to the program text, and the (optional)
distinctive brackets aid disambiguation of the scope of the
arrows in complex conditions. Furthermore, a condition (ei-
ther forward or backward) can be inserted anywhere within
the program (not just at the beginning of the code as with
traditional conditioned slicing). Finally, there is no need to
restrict oneself to a single condition. Therefore, the condi-
tioned slicing criterion is generalised to a set of pairs. Each
pair contains either

0 A traditional ‘static’ criterion: a set of variables and
point of interest or

0 A condition/program point pair

In their most general form the static part of the criteria
also has a direction, following the introduction of forward
static slicing [9], which mirrors backward slicing in much
the same way as backward conditions mirror forward con-
ditions. However, the focus of this paper is the introduction

of backward conditions and their use in program compre-
hension, so this possibility will not be explored further in
the present paper.

Using this generalised notation, the conditioned slicing
criterion for the bank account program in Figure 1 would
be denoted

The rest of this paper is organised as follows. Section 2
presents a simple case study to show how backward con-
ditioning can be used in a program comprehension setting.
Section 3 presents an algorithm for computing backward
conditioned programs, based upon an augmentation of the
ConSIT approach [SI. Section 4 describes the relationship
between traditional slicing and backward and forward con-
ditioning and Section 5 concludes.

2. Application to Program Comprehension

This section briefly illustrates the way backward condi-
tions can be used to assist in program comprehension. Con-
sider the simple tax calculation program in Figure 2, which
was used in [SI to illustrate the use of forward conditions,
implemented by the ConSIT system.

The program represents a computation of tax codes and
amounts of tax payable, including allowances for a United
Kingdom citizen in the tax year April 1998 to April 1999.
Each person has a personal allowance which is an amount
of un-taxed income. The personal allowance depends upon
the status of the person, reflected by the boolean variables
blind, married and widowed and the integer variable age.
There are three tax bands, for which tax is charged at the
rates of lo%, 23% and 40%. The width of the 10% tax
band is subject to the status of the person, while the 23%
and 40% are fixed for all individuals. This set of taxation
rules constitutes a govemmental ‘business system’, and the
program in Figure 2 represents an attempt to capture these
rules in program code.

While forward conditions are helpful in understanding
this program, backward conditions provide a useful addi-
tional tool in the armory of program comprehension.

For example, suppose that the programmer is interested
in the personal allowance. The maximum personal al-
lowance that any individual could obtain under the UK tax-
ation rules in 1999 was E7360. Who was entitled to this
allowance? Using backward conditioning the condition

personal = 7360

can be inserted at the end of the program. The variable of
interest in this case is the final value of personal. There-
fore the conditioned slicing criterion is

{(‘[personal = 73 601, end), ({personal}, end)}

90

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

1 i f (bal>O)
2 i f (babwdraw)
3 ba l = ba l - wdraw

else
4 { gap = b a l - wdraw;
5 i f (go ld (cus t) & & gap < top)
6
1 ba l = 0; }
8 e l s e ba l = b a l - wdraw ;

9 p r i n t f ("%d" ,ba l) ;

{ pinkzone = wdraw - ba l ;

}

Original

1 i f (bal>O)
2 i f (babwdraw)

else
{ gap = ba l - wdraw; 4

5 i f (go ld (cus t) C & gap < top)

8 e l s e b a l = b a l - wdraw ;

9 p r i n t f ("%d" ,ba l) ;

Result of backward conditioning

1

Figure 1. Backward conditioning on b a l < 0 at line 9

Slicing with respect to this criterion yields the slice
in Figure 3. This program contains computations which
could lead to the final value of the variable personal being
&7360. It removes all computation which cannot leave the
program in this state. Therefore, the programmer can con-
clude that the program will not award a personal allowance
of E7360 unless the individual is blind and at least 75 years
of age.

In this way backward conditioning allows speculative
hypotheses about the program's behaviour to be investi-
gated. It does not, in general, answer these questions com-
pletely, because the programmer still has some program
code to consider. However, it assists the human by auto-
matically removing portions of code which are not relevant
to the question under consideration.

Occasionally, the programmer will phrase a question
about the execution as a backward condition, and will re-
ceive a definitive answer. This happens when the slice
is empty, revealing that the backward condition can never
arise. This is helpful in asking questions which serve as
'sanity checks'. For example, in the case of taxation, no in-
dividual should (under the 1999 UK law) receive an overall
income tax burden of 40% or more. This can be checked by
appending to the end of the program backward condition,

(t ax >= incomeo * 40)/100

where incomeo captures the original value of the variable
income (i.e. the individual's gross income). This condition
asserts that the amount of tax paid is at least 40% of the
individual's gross income. Since this is not possible, condi-
tioning the program with respect to this backward condition
yields the empty program. More formally, the empty slice
is obtained for the slicing criterion

{ (t l (t ax >= incomeo * 40)/10OJ,end),
({tax}, end)}

3. Computing Backward Conditioned Slices

As with conventional forward slicing [4, 51, automated
backward conditioning requires symbolic execution to-
gether with automatic theorem proving. To eliminate irrele-
vant paths, for each statement (or statement block) the algo-
rithm has to determine whether all paths through that state-
ment lead to the negation of the required condition. This
is achieved by: (i) extending the notion symbolic execution
so that a path which leads to the negation of the required
condition(s) are given a distinguished value I; (ii) for each
statement determining whether all paths lead to I, in which
case the statement is irrelevant for the purpose of obtaining
the required condition.

Theorem proving is computationally expensive. To re-
duce the number of theorems to be proved during backward
conditioning, a practical system might slice the program
first, perhaps using a default slicing criterion consisting of
the variables mentioned in the required backwards condi-
tion.

Conceptually, the system is thus comprised of the fol-
lowing components:

1. Static Slicer

2. Symbolic Executor

3. Theorem Prover

The slicer first eliminates statements on program depen-
dence grounds. The symbolic executor and theorem prover
essentially seek to eliminate additional statements on path-
condition grounds: the symbolic executor provides a set of
path-state pairs { (~ , , ~ ~) , . . . ,(~",~")} for each statement
[5], and this information is used by the theorem prover to
determine the relevant paths and statements. To simplify

91

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

main0 {
int age, blind, widow, married, income;
int personal, tax, t;

scanf ("%d", &age) ;
scanf ("%d", &blind) ;
scanf ("%d", &married) ;
scanf ("%d", &widow) ;
scanf ("%d", &income) ;

if (age>=75) personal = 5980;
else if (age>=65) personal = 5720;
else personal = 4335;

if ((age>=65) 6 & income>16800) {
t = personal - ((income-16800)/2);
if (t>4335) personal = t;
else personal = 4335;)

if (blind) personal = personal t 1380;

if (married & & age>=75) pcl0 = 6692;
else if (married & & (age>=65)) pcl0 = 6625;
else if (married 1 I widow) pcl0 = 3470;
else pcl0 = 1500;

if (married & & age>=65 & & income>16800) {
t = pclO-((income-l6800)/2);
if (t>3470) pcl0 = t; else pcl0 = 3470;)

if (income<=personal) tax = 0;
else {

income = income-personal;
if (income<=pclO) tax = income/lO;
else {

tax = pc10/10;
income = income-pcl0;
if (income<=28000)

else {
tax = ((taxtincome)*23)/100;

tax = ((taxt28000) *23) /loo;
income = income-28000;
tax = ((taxtincome) *40)/100.;)}}

if (!blind & & !married & & aget65)
code = 'L';

else if (!blind & & aget65 & & married)
code = 'H';

else if (age>=65 & & aget75 & & !married & & !blind)
code = 'P';

else if (age>=65 & & aget75 & & married & & !blind)
code = 'V' ;

else code = 'T';
1

Figure 2. UK Income Taxation Calculation Program

the implementation, we can introduce the backward condi-
tion p at line I, (+ IpJ , l) , by way of a new program statement
assertb (p) that is inserted at line 1.

In order to determine whether a statement block s
can contribute to obtaining the desired condition c, we
need to determine all the execution paths X I , . . . ,nn that
pass through s, together with their related symbolic states
01,. . . ,on. If every path g (1 5 k 5 n) through that state-
ment block can be shown to lead to the negation of c, when
evaluated in the corresponding state q, then that block can
be coloured as being irrelevant for obtaining the desired
condition.

The algorithm for backward condition path reduction
has the steps given below:

1. Label statements.

2. Find all execution paths and symbolic states.

3. Associate each path with the labels of the statements
on that path.

4. Eliminate every statement which is not associated
with any path that can support the required condition.

The detail of each of these steps is as follows:

1. Each statement (or statement block) is associated with a
unique identifier (e.g. a line number).'

2. The symbolic executor finds all of the possible symbolic
execution paths through the program. The leaves of the
execution "tree" for a conventional program are denoted
by pairs of path conditions and symbolic states. The be-
haviour of the symbolic executor is extended in such a
way that paths where the required condition(s) are not
obtained have the distinguished value I as their sym-
bolic path-state?

3. The leaves of the execution tree each correspond with
the symbolic result of a possible path of execution. We
associate each leaf of the execution tree with the set of
statement identifiers that denote the statements that are
executed on the corresponding path.

'For the sake of simplicity, we talk of eliminating individual statements
in this algorithm. However, it is generally better to consider eliminating
statement blocks rather than individual statements, as this reduces the time
complexity of the algorithm: the number of calls to the theorem prover is
then determined by the number of symbolic execution paths, rather than
the product of the number of statements and paths.

2With a single backward condition, only statements leading up to the
condition need be considered. Also, for the purpose of symbolic execution,
different numbers of non-zero iterations of a terminating loop for can be
considered as equivalent.

92

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

main() {
int age, blind;
int personal;

scanf ("%d", &age) ;
scanf ("%d", &blind) ;
if (age>=75) personal = 5980;
if (blind) personal = personal + 1380 ;

1
I J

Figure 3. Highest Personal Allowance

4. If all the paths through a statement (i.e. all of the paths
which are associated with that statement's identifier) are
I (that is, they can be shown not to support the required
condition) then that statement can be eliminated. This
has the effect of eliminating code that is on paths that
can be shown to lead to the negation of the required con-
dition.

This implementation requires the incorporation of a the-
orem prover into the symbolic executor. Currently, our
implementation work is focused on the Stanford Validity
Checker (SVC), which is able to reason effectively with
arithmetic expressions and linear inequalities [3, 21, as well
as the Isabelle, which is a more general purpose theorem
prover [14, 15, 161. Both SVC and Isabelle have been suc-
cessfully integrated with a Prolog-based symbolic executor
and Java-based slicer (Espresso) [6] to achieve forward con-
ditioned program slicing [5] . Work is underway to extend
the implementation to incorporate the backward condition-
ing algorithm presented here.

3.1. Example of Backward Conditioning

Figure 4 is a simple example of a program containing a
conditional which we will backward condition. Conditional
expressions, such as those declared by assertb, have to be
interpreted in the relevant (symbolic) state. A condition c
occurring in the context generated by program p is evalu-
ated in each of the symbolic states that arise on the various
paths through p. If the expression n D (T is one of the path-
state pairs generated by symbolic execution of p-where 7c
is the path condition, and (3 is the corresponding symbolic
state-then c is to be evaluated in symbolic state CL which
we write Io(c), treating (T as a partial function from vari-
ables to their symbolic values. Essentially this gives the
interpretation of the program statement c in the state (3, as
in ordinary state-based program semantics, except that here
the state (T is a symbolic state.

In order to perform backward conditioning, it is neces-
sary to check, for each statement, whether there are any
paths through that statement that might allow us to obtain

the required condition. If all paths through a statement al-
low us to demonstrate that the negation of the condition
holds, then that statement can be deleted.

Figure 5 plots key statements against the paths upon
which they appear. For path-state (i), namely (a0 > 10) D

(a = 2 0 ~ 0 , a0 = ao), to determine whether that path could
lead to the satisfaction of the required condition, the ques-
tion is whether:

> 10 t- 7I(a=20q,,ao=u,3)(a < ao)

where thesequent a I- b means that we can derive b given
a. In this case, b is the negation of the condition a < a0
asserted by the statement asser tb (a < a0 1 when evalu-
ated in the appropriate symbolic state. If the sequent can
be shown to be valid, then the path does not give rise to the
required condition. If all paths through a given statement
block do not give rise to the required condition, then the
statements in that block can be elided.

So, evaluating the backward condition in the final sym-
bolic state on this path gives us:

a0 > 10 I- 1(20ao < ao)

which is valid.
For path (ii) we have the following:

ao >c 10 I- iZ(a=O,ao=.o) (a < ao)

Performing the substitution, this gives us:

a0 >' 10 I- 7(0 < ao)

which is not valid.

path (i):
Summarising these proofs we have the following, for

1. ao > 101- 7 $ = 2 0 ~ ~ , ~ ~ = 4 (a < ao)

2. a0 > 1oI- 7(20ao < ao)

3. valid

and for path (ii):

93

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

program code

main() {
int a;
scanf{”%d“, & a] ;

’ a0 = a;

if (a > 10) I
a = a * 20;

] e l s e { a = 0;

1

a s s e r t b (a < ao) ;

1

comment

This statement occurs on path (i) and (ii) below. At this point, the path
condition is empty, and the symbolic state is a = ao, where a0 is a unique
symbolic constant, standing for the unknown input value. We write this as
T D a = ao.
Added to capture initial value of a. Path condition and symbolic state:
TDa=ao ,ao =a0

This statement, call it A, only occurs on path (i), below. Path condition and
symbolic state: a0 > 10 D a = 2 0 ~ 0 , a0 = ao
This statement, call it B, occurs on path (ii), below. Path condition and
symbolic state: ao 3 10 D a = 0, a0 = ao
Path condition and symbolic states at this point:
(i)ao> 1 0 ~ a = 2 0 a o , a 0 =a0

(ii) a0 3 10Da = 0,ao = ao
This statement has been added to state the condition of interest. In essence,
it indicates that we are interested in determining which parts of the pro-
gram are responsible for decreasing the value of variable a compared to its
original input value, as recorded by a0

Figure 4. A Simple Program and its Paths

So executions along path (i), through statement ‘A’ (a =

a * 20), definitely cannot allow the asserted condition to
be true, but executions following path (ii), through state-
ment ‘B’ (a = 0), might. As no computations along path
(i) can satisfy the asserted condition, statements that are ex-
clusive to that path can be eliminated.

What if the condition had been a s s e r t b (a > ao) ? For
path (i) we would have the following derivation:

2. a0 > 10 I- 4 2 0 a o > ao)

3. not valid

2. a0 $ 10 I- l (0 < ao)

3. not valid

From this we can see that execution paths through state-
ment ‘A’ make the condition true, and although execution
paths through ‘B’ do not necessarily lead to the truth of the
condition, they include computations in which the condition
is true. Thus neither statement can be eliminated.

4. Related Work

Program slicing was introduced by Weiser [17, 191. The
original intention of slicing was to assist in program debug-
ging [131, but Weiser also empirically investigated slicing’s
ability to assist program comprehension [181. Weiser’s slic-
ing criterion consisted of a set of variables of interest V and
a point of interest n within the original program. Statement..
which cannot affect the values of variables in V at n are re-
moved to form the slice.

For example, consider the program in section (a) of Fig-
ure 6. Slicing this program with respect to the criterion
({ x } , 8) yields the slice in section (b). Slicing in this way
assist program comprehension by removing the computa-
tion on y, allowing the programmer to focus on the compu-
tation on x.

Korel and Laski [ll] introduced dynamic slicing as
a counterpart to Weiser’s original static formulation, and
more recently investigated the use of dynamic slicing in pro-
gram comprehension [121. The dynamic slicing criterion

94

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

i n t a; s
scanf{”%d“, &a};

(a > 1 0) an

I a s s e r t b i a < ao); asser tb(a < ao);

Path (i):
a0 > ~ O D a = 20~0, a0 = ao

Path (ii):
ao;d 10Da=O,ao=ao

Figure 5. Execution Paths Made Explicit

augments the static criterion with a sequence of input val-
ues. The dynamic criterion is thus a triple, (Z,V,n), where I
is an input sequence and (V,n) is the static slicing criterion.

Conditioned slicing [4, 5, 71 augments Weiser’s tradi-
tional static slicing criterion with a condition which cap-
tures a set of initial program states of interest. This allows
a programmer to further specialize a program by eliminat-
ing statements which do not contribute to the computation
of the variables of interest when the program is executed in
one of the initial states of intere~t.~

The conditioned slicing criterion is thus a triple, (p ,V ,n)
where p is some initial condition of interest and (V,n) are
the two components of the ‘static’ slicing criterion. For ex-
ample, the conditioned slice of the original program in sec-
tion (a) of Figure 6 for the criterion (x>O,{x},S) is shown
in section (c) of the figure. This slice is also the dynamic
slice for all input sequences in which the first element, x of
the sequence satisfies the condition x > 0.

Conditioned slicing is more useful for comprehension
than either static or dynamic slices because it subsumes and
generalizes both [4]. However, as has been demonstrated
in the present paper, there are situations where it is useful
to generalise the conditions used in conditioning a program,
allowing both backward and forward conditions. This gen-
eralization requires a notation which allows slicing criteria
to contain an arbitrary number of both forward and back-
ward conditions. Using this generalised notation, the slic-
ing criterion for the traditional conditioned slice in section
(c) of Figure 6 is reformulated as

Forward conditioning assists the programmer by consid-
ering the effect of propagating state information forward
from a condition. This addresses questions of the form

“what would happen if the program continued
from here in some state satisfying p.”

3Pr0gram conditioning exploits a form of feasible path analysis. This
kind of analysis has also been used in the context of program testing [8 , IO].

However, the effect of backward conditioning is the mirror-
image of that for forward conditioning. For example, sec-
tion (d) of Figure 6 shows the effect of backward condition-
ing the original program in section (a) with respect to the
condition {(tlx>OJ),S), ({x},S)}. This slice removes code
which cannot leave the program in a final state satisfying
x>o.

Backward conditioning assists the programmer by con-
sidering the effect of propagating state information back-
ward from a condition. This addresses questions of the form

“how could the program have arrived here in
some state satisfying p.”

Of course, the generalisation presented here allows
for both forms of condition to be combined. For
example, consider the conditioned slicing criterion
{(~~~~=oJ),8),(~~x~0~,1),({~},S)}. For this criterion the
slice is the empty program, revealing that it is impossible
for the program in Figure 6 to start off with x being positive
and finish up with it being negative.

In the example of Figure 4, rather than delete the pro-
gram statement, it might be more informative to colour it (or
display it ‘greyed out’) [l]. If this idea of colouring state-
mens is adopted, then the backward condition can be more
informative even in the subsequent example where the con-
dition is changed to a > ao: colours can be used to indicate
that when a particular statement is executed, the backward
condition will always be true-the then part of the condi-
tional in the second example-and when the status of the
backward condition is contingent-as with the else part of
the conditional in both of these examples.

It may be appropriate to aim to remove irrelevant state-
ments from within a path, rather than merely eliminate ir-
relevant paths. One way this can be achieved is by using
counter-factual reasoning. For each statement we symboli-
cally execute the program with that statement removed, and
see whether we can show that the variables of interest will
have the same value compared with the original program. If
so, then that statement may safely be removed. Essentially

95

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

1 scanf ("%d", &x);
2 y=2*x;
3 if (y>x)
4 { x=xtl;
5 Y=Y*Y;}

7 y=y-x;}

else
6 { x=x*2;

8 printf("%d",x);
(a) Original

1 scanf("%d",&x);
2 y=2*x;
3 if (y>x)
4 x=xtl;

else
6 x=x*2;

1 scanf("%d",&x);
2 y=2*x;
3 if (y>x)
4 x=xtl;

(b) slice on ({x},8)

1 scanf ("%d", &x);
2 y=2*x;
3 if (y>x)

(c) Conditionedon r[x>Ol

else
6 x=x*2;

(d) Conditioned on f l x>O I

Figure 6. Comparison of forward and backward conditioning

this is semantic slicing. This is a very expensive analysis
and in most cases standard static slicing will achieve results
that are almost as good much more cheaply.

5. Conclusions and Future Work

This paper introduces a new program specialisation tech-
nique call 'backward conditioning', a counterpart to for-
ward conditioning, used in conditioned program slicing.

It is argued that backward conditioning is useful as a sup-
porting technology in program comprehension. It allows a
programmer to explore the answer to questions such as

"How could the program reach this point with a
negative value for x?'

and

"Which statements could make x equal y at this
point?'

Backward conditioning propagates state information
backward from the condition point to delete statemenb
which could not cause execution to satisfy the condition,
wherea$ forward conditioning propagates state information
forward from the condition to delete statemen& which could
not be executed were the condition to be satisfied. In this
way backward conditioning provides a complement to tra-
ditional forward conditioning, which allows questions like

"Which statements would have been executed
were x to equal y at this point?'

or

"What happens if execution continues from this
point with a negative value for x?'

It would be interesting to combine backward and forward
conditioning and backward and forward slicing into a single
unified program analysis technique. This would potentially

create a powerful and highly general technique for program
specialisation, which would allow the programmer to ex-
plore the answer to sophisticated questions about program
behaviour as a part of program comprehension activity. This
combination of backward and forward conditioning remains
a problem for future work.

References

[13 T. Ball and S. G. Eick. Visualizing program slices. In A. L.
Ambler and T. D. Kimura, editors, Proceedings of the Sym-
posium on Visual Languages, pages 288-295, Los Alamitos,
CA, USA, Oct. 1994. TEEE Computer Society Press.

[2] C. Barrett, D. Dill, and J. Levitt. Validity checking for
combinations of theories with equality. In M. Srivas and
A. Camillen, editors, Formal Methods In Computer-Aided
Design, volume 11 66 of Lecture Notes in Computer Science,
pages 187-201. Springer-Verlag, November 1996. Palo
Alto, Califomia, November 6 8 .

[3] C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision pro-
cedure for bit-vector arithmetic. In Proceedings ofthe 35th
Design Automation Conference, June 1998. San Francisco,
CA.

[4] G. Canfora, A. Cimitile, and A. De Lucia. Conditioned pro-
gram slicing. In M. Harman and K. Gallagher, editors, Infor-
mation and Software Technology Special Issue on Program
Slicing, volume 40, pages 595-607. Elsevier Science B. V.,
1998.

[5] S. Danicic, C. Fox, M. Harman, and R. Hierons. ConSIT: A
conditioned program slicer. In IEEE International Confer-
ence on Software Maintenance (ICSM'OO), pages 216226,
San Jose, Califomia, USA, Oct. 2000. IEEE Computer So-
ciety Press, Los Alamitos, Califomia, USA.

[6] S. Danicic and M. Harman. Espresso: A slicer generator. In
ACM Symposium on Applied Computing, (SAC'OO), page To
appear, Como, Italy, Mar. 2000.

[7] A. De Lucia, A. R. Fasolino, and M. Munro. Understanding
function behaviours through program slicing. In 4'h IEEE
Workshop on Program Comprehension, pages 9-18, Berlin,
Germany, Mar. 1996. IEEE Computer Society Press, Los
Alamitos, Califomia, USA.

96

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

[SI A. Goldberg, T. C. Wang, and D. Zimmerman. Applications
of feasible path analysis to program testing. In Proceedings
of the 1994 international symposium on Software testing and
analysis, pages 8CL94, Seattle, WA USA, August 1994.

[9] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Transactions on Program-
ming Languages and Systems, 12(1):26-61, 1990.

[lo] R. Jasper, M. Brennan, K. Williamson, B. Currier, and
D. Zimmerman. Test data generation and feasible path anal-
ysis. In Proceedings of the 1994 international symposium
on Software testing and analysis, pages 95-107, Seattle, WA
USA, August 1994.

1111 B. Korel and J. Laski. Dynamic program slicing. Informa-
tion Processing Letters, 29(3): 155-163, Oct. 1988.

[121 B. Korel and J. Rilling. Dynamic program slicing in under-
standing of program execution. In 5'h IEEE International
Workshop on Program Comprehesion (IWPC'97), pages 8CL
89, Dearborn, Michigan, USA, May 1997. IEEE Computer
Society Press, Los Alamitos, California, USA.

[13] J. R. Lyle and M. Weiser. Automatic program bug loca-
tion by program slicing. In 2"d International Conference on
Computers and Applications, pages 877-882, Peking, 1987.
IEEE Computer Society Press, Los Alamitos, California,
USA.

[141 L. C. Paulson. Isabelle: A generic theorem prover. Lecture
Notes in Computer Science, 828:xvii + 321, 1994.

[15] L. C. Paulson. Isabelle's reference manual. Technical Report
283, University of Cambridge, Computer Laboratory, 1997.

[16] L. C. Paulson. Strategic principles in the design of Isabelle.
In CADE-1.5 Workshop on Strategies in Automated Deduc-
tion, pages 11-17, Lindau, Germany, 1998.

[17] M. Weiser. Program slices: Formal, psychological, and
practical imJestigations of an automatic program abstrac-
tion method. PhD thesis, University of Michigan, Ann Ar-
bor, MI, 1979.

[18] M. Weiser. Programmers use slicing when debugging. Com-
munications of the ACM, 25(7):446452, July 1982.

[191 M. Weiser. Program slicing. IEEE Transactions on Sofbvare
Engineering, 10(4):352-357, 1984.

97

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

