23 research outputs found

    Clinical significance of soluble CADM1 as a novel marker for adult T-cell leukemia/lymphoma

    Get PDF
    Adult T-cell leukemia/leukemia (ATLL) is an aggressive peripheral T-cell malignancy, caused by infection with the human T-cell leukemia virus type 1 (HTLV-1). We have recently shown that cell adhesion molecule 1 (CADM1), a member of the immunoglobulin superfamily, is specifically and consistently overexpressed in ATLL cells, and functions as a novel cell surface marker. In this study, we first show that a soluble form of CADM1 (sCADM1) is secreted from ATLL cells by mainly alternative splicing. After developing the Alpha linked immunosorbent assay (AlphaLISA) for sCADM1, we showed that plasma sCADM1 concentrations gradually increased during disease progression from indolent to aggressive ATLL. Although other known biomarkers of tumor burden such as soluble interleukin-2 receptor α (sIL-2Rα) also increased with sCADM1 during ATLL progression, multivariate statistical analysis of biomarkers revealed that only plasma sCADM1 was selected as a specific biomarker for aggressive ATLL, suggesting that plasma sCADM1 may be a potential risk factor for aggressive ATLL. In addition, plasma sCADM1 is a useful marker for monitoring response to chemotherapy as well as for predicting relapse of ATLL. Furthermore, the change in sCADM1 concentration between indolent and aggressive type ATLL was more prominent than the change in the percentage of CD4+CADM1+ ATLL cells. As plasma sCADM1 values fell within normal ranges in HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients with higher levels of serum sIL-2Rα, a measurement of sCADM1 may become a useful tool to discriminate between ATLL and other inflammatory diseases, including HAM/TSP

    Inferring clonal structure in HTLV-1-infected individuals: towards bridging the gap between analysis and visualization

    No full text
    Abstract Background Human T cell leukemia virus type 1 (HTLV-1) causes adult T cell leukemia (ATL) in a proportion of infected individuals after a long latency period. Development of ATL is a multistep clonal process that can be investigated by monitoring the clonal expansion of HTLV-1-infected cells by isolation of provirus integration sites. The clonal composition (size, number, and combinations of clones) during the latency period in a given infected individual has not been clearly elucidated. Methods We used high-throughput sequencing technology coupled with a tag system for isolating integration sites and measuring clone sizes from 60 clinical samples. We assessed the role of clonality and clone size dynamics in ATL onset by modeling data from high-throughput monitoring of HTLV-1 integration sites using single- and multiple-time-point samples. Results From four size categories analyzed, we found that big clones (B; 513–2048 infected cells) and very big clones (VB; >2048 infected cells) had prognostic value. No sample harbored two or more VB clones or three or more B clones. We examined the role of clone size, clone combination, and the number of integration sites in the prognosis of infected individuals. We found a moderate reverse correlation between the total number of clones and the size of the largest clone. We devised a data-driven model that allows intuitive representation of clonal composition. Conclusions This integration site-based clonality tree model represents the complexity of clonality and provides a global view of clonality data that facilitates the analysis, interpretation, understanding, and visualization of the behavior of clones on inter- and intra-individual scales. It is fully data-driven, intuitively depicts the clonality patterns of HTLV-1-infected individuals and can assist in early risk assessment of ATL onset by reflecting the prognosis of infected individuals. This model should assist in assimilating information on clonal composition and understanding clonal expansion in HTLV-1-infected individuals

    Mutational Intratumor Heterogeneity is a Complex and Early Event in the Development of Adult T-cell Leukemia/Lymphoma

    No full text
    The clonal architecture of tumors plays a vital role in their pathogenesis and invasiveness; however, it is not yet clear how this clonality contributes to different malignancies. In this study we sought to address mutational intratumor heterogeneity (ITH) in adult T-cell leukemia/lymphoma (ATL). ATL is a malignancy with an incompletely understood molecular pathogenesis caused by infection with human T-cell leukemia virus type-1 (HTLV-1). To determine the clonal structure through tumor genetic diversity profiles, we investigated 142 whole-exome sequencing data of tumor and matched normal samples from 71 ATL patients. Based on SciClone analysis, the ATL samples showed a wide spectrum of modes over clonal/subclonal frequencies ranging from one to nine clusters. The average number of clusters was six across samples, but the number of clusters differed among different samples. Of these ATL samples, 94% had more than two clusters. Aggressive ATL cases had slightly more clonal clusters than indolent types, indicating the presence of ITH during earlier stages of disease. The known significantly mutated genes in ATL were frequently clustered together and possibly coexisted in the same clone. IRF4, CCR4, TP53, and PLCG1 mutations were almost clustered in subclones with a moderate variant allele frequency (VAF), whereas HLA-B, CARD11, and NOTCH1 mutations were clustered in subclones with lower VAFs. Taken together, these results show that ATL displays a high degree of ITH and a complex subclonal structure. Our findings suggest that clonal/subclonal architecture might be a useful measure for prognostic purposes and personalized assessment of the therapeutic response
    corecore