870 research outputs found

    Structural Ordering and Symmetry Breaking in Cd_2Re_2O_7

    Full text link
    Single crystal X-ray diffraction measurements have been carried out on Cd_2Re_2O_7 near and below the phase transition it exhibits at Tc' ~195 K. Cd_2Re_2O_7 was recently discovered as the first, and to date only, superconductor with the cubic pyrochlore structure. Superlattice Bragg peaks show an apparently continuous structural transition at Tc', however the order parameter displays anomalously slow growth to ~Tc'/10, and resolution limited critical-like scattering is seen above Tc'. High resolution measurements show the high temperature cubic Bragg peaks to split on entering the low temperature phase, indicating a (likely tetragonal) lowering of symmetry below Tc'.Comment: 4 pages, 4 figure

    Magnetic and superconducting properties of Cd2Re2O7: Cd NMR and Re NQR

    Full text link
    We report Cd NMR and Re NQR studies on Cd2Re2O7, the first superconductor among pyrochlore oxides Tc=1 K. Re NQR spectrum at zero magnetic field below 100 K rules out any magnetic or charge order. The spin-lattice relaxation rate below Tc exhibits a pronounced coherence peak and behaves within the weak-coupling BCS theory with nearly isotropic energy gap. Cd NMR results point to moderate ferromagnetic enhancement at high temperatures followed by rapid decrease of the density of states below the structural transition temperature of 200 K.Comment: 4 pages, 4 figure

    Hubbard chains network on corner-sharing tetrahedra: origin of the heavy fermion state in LiV_2O_4

    Get PDF
    We investigate the Hubbard chains network model defined on corner-sharing tetrahedra (the pyrochlore lattice) which is a possible microscopic model for the heavy fermion state of LiV_2O_4. Based upon this model, we can explain transport, magnetic, and thermodynamic properties of LiV_2O_4. We calculate the spin susceptibility, and the specific heat coefficient, exploiting the Bethe ansatz exact solution of the 1D Hubbard model and bosonization method. The results are quite consistent with experimental observations. We obtain the large specific heat coefficient γ222mJ/molK2\gamma\sim 222 {\rm mJ/mol K^2}.Comment: 5 pages, 2 figures, a postscript file of Figure 1 is not included, to appear in Physical Review

    Metal-Insulator Transition and Magnetic Order in the Pyrochlore Oxide Hg2Ru2O7

    Full text link
    We report results of NMR experiments on the ruthenium oxide Hg2Ru2O7 with the pyrochlore structure, which exhibits a metal-insulator transition at TMI = 107 K. In the metallic phase above TMI, the nuclear spin-lattice relaxation rate 1/T1 and the Knight shift at the Hg sites follow the Korringa relation, indicating the absence of substantial spatial spin correlation. At low temperatures in the insulating phase, 99,101Ru-NMR signals are observed at zero magnetic field, providing evidence for a commensurate antiferromagnetic order. The estimated ordered moment is about 1 muB per Ru, much smaller than 3 muB expected for the ionic (4d)3plus configuration of Ru5plus. Thus the localized spin models are not appropriate for the insulating phase of Hg2Ru2O7. We also discuss possible antiferromagnetic spin structures.Comment: 10 pages, 7 figure

    Nitrogen metabolism responses to water deficit act through both abscisic acid (ABA)-dependent and independent pathways in Medicago truncatula during post-germination

    Get PDF
    The modulation of primary nitrogen metabolism by water deficit through ABA-dependent and ABA-independent pathways was investigated in the model legume Medicago truncatula. Growth and glutamate metabolism were followed in young seedlings growing for short periods in darkness and submitted to a moderate water deficit (simulated by polyethylene glycol; PEG) or treated with ABA. Water deficit induced an ABA accumulation, a reduction of axis length in an ABA-dependent manner, and an inhibition of water uptake/retention in an ABA-independent manner. The PEG-induced accumulation of free amino acids (AA), principally asparagine and proline, was mimicked by exogenous ABA treatment. This suggests that AA accumulation under water deficit may be an ABA-induced osmolyte accumulation contributing to osmotic adjustment. Alternatively, this accumulation could be just a consequence of a decreased nitrogen demand caused by reduced extension, which was triggered by water deficit and exogenous ABA treatment. Several enzyme activities involved in glutamate metabolism and genes encoding cytosolic glutamine synthetase (GS1b; EC 6.3.1.2.), glutamate dehydrogenase (GDH3; EC 1.4.1.1.), and asparagine synthetase (AS; EC 6.3.1.1.) were up-regulated by water deficit but not by ABA, except for a gene encoding Δ1-pyrroline-5-carboxylate synthetase (P5CS; EC not assigned). Thus, ABA-dependent and ABA-independent regulatory systems would seem to exist, differentially controlling development, water content, and nitrogen metabolism under water deficit

    TRIM16 acts as a tumour suppressor by inhibitory effects on cytoplasmic vimentin and nuclear E2F1 in neuroblastoma cells

    Get PDF
    The family of tripartite-motif (TRIM) proteins are involved in diverse cellular processes, but are often characterized by critical protein–protein interactions necessary for their function. TRIM16 is induced in different cancer types, when the cancer cell is forced to proceed down a differentiation pathway. We have identified TRIM16 as a DNA-binding protein with histone acetylase activity, which is required for the retinoic acid receptor β2 transcriptional response in retinoid-treated cancer cells. In this study, we show that overexpressed TRIM16 reduced neuroblastoma cell growth, enhanced retinoid-induced differentiation and reduced tumourigenicity in vivo. TRIM16 was only expressed in the differentiated ganglion cell component of primary human neuroblastoma tumour tissues. TRIM16 bound directly to cytoplasmic vimentin and nuclear E2F1 in neuroblastoma cells. TRIM16 reduced cell motility and this required downregulation of vimentin. Retinoid treatment and enforced overexpression caused TRIM16 to translocate to the nucleus, and bind to and downregulate nuclear E2F1, required for cell replication. This study, for the first time, demonstrates that TRIM16 acts as a tumour suppressor, affecting neuritic differentiation, cell migration and replication through interactions with cytoplasmic vimentin and nuclear E2F1 in neuroblastoma cells

    Synergistic Apoptosis Induction in Leukemic Cells by the Phosphatase Inhibitor Salubrinal and Proteasome Inhibitors

    Get PDF
    Cells adapt to endoplasmic reticulum (ER)-stress by arresting global protein synthesis while simultaneously activating specific transcription factors and their downstream targets. These processes are mediated in part by the phosphorylation-dependent inactivation of the translation initiation factor eIF2alpha. Following restoration of homeostasis protein synthesis is resumed when the serine/threonine-protein phosphatase PP1 dephosphorylates and reactivates eIF2alpha. Proteasome inhibitors, used to treat multiple myeloma patients evoke ER-stress and apoptosis by blocking the ER-associated degradation of misfolded proteins (ERAD), however, the role of eIF2alpha phosphorylation in leukemic cells under conditions of proteasome inhibitor-mediated ER stress is currently unclear.Bcr-Abl-positive and negative leukemic cell lines were used to investigate the functional implications of PP1-related phosphatase activities on eIF2alpha phosphorylation in proteasome inhibitor-mediated ER stress and apoptosis. Rather unexpectedly, salubrinal, a recently identified PP1 inhibitor capable to protect against ER stress in various model systems, strongly synergized with proteasome inhibitors to augment apoptotic death of different leukemic cell lines. Salubrinal treatment did not affect the phosphorlyation status of eIF2alpha. Furthermore, the proapoptotic effect of salubrinal occurred independently from the chemical nature of the proteasome inhibitor, was recapitulated by a second unrelated phosphatase inhibitor and was unaffected by overexpression of a dominant negative eIF2alpha S51A variant that can not be phosphorylated. Salubrinal further aggravated ER-stress and proteotoxicity inflicted by the proteasome inhibitors on the leukemic cells since characteristic ER stress responses, such as ATF4 and CHOP synthesis, XBP1 splicing, activation of MAP kinases and eventually apoptosis were efficiently abrogated by the translational inhibitor cycloheximide.Although PP1 activity does not play a major role in regulating the ER stress response in leukemic cells, phosphatase signaling nevertheless significantly limits proteasome inhibitor-mediated ER-stress and apoptosis. Inclusion of specific phosphatase inhibitors might therefore represent an option to improve current proteasome inhibitor-based treatment modalities for hematological cancers

    Theoretical analysis of the dose dependence of the oxygen enhancement ratio and its relevance for clinical applications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The increased resistance of hypoxic cells to ionizing radiation is usually believed to be the primary reason for treatment failure in tumors with oxygen-deficient areas. This oxygen effect can be expressed quantitatively by the oxygen enhancement ratio (OER). Here we investigate theoretically the dependence of the OER on the applied local dose for different types of ionizing irradiation and discuss its importance for clinical applications in radiotherapy for two scenarios: small dose variations during hypoxia-based dose painting and larger dose changes introduced by altered fractionation schemes.</p> <p>Methods</p> <p>Using the widespread Alper-Howard-Flanders and standard linear-quadratic (LQ) models, OER calculations are performed for T1 human kidney and V79 Chinese hamster cells for various dose levels and various hypoxic oxygen partial pressures (pO2) between 0.01 and 20 mmHg as present in clinical situations <it>in vivo</it>. Our work comprises the analysis for both low linear energy transfer (LET) treatment with photons or protons and high-LET treatment with heavy ions. A detailed analysis of experimental data from the literature with respect to the dose dependence of the oxygen effect is performed, revealing controversial opinions whether the OER increases, decreases or stays constant with dose.</p> <p>Results</p> <p>The behavior of the OER with dose per fraction depends primarily on the ratios of the LQ parameters alpha and beta under hypoxic and aerobic conditions, which themselves depend on LET, pO2 and the cell or tissue type. According to our calculations, the OER variations with dose <it>in vivo </it>for low-LET treatments are moderate, with changes in the OER up to 11% for dose painting (1 or 3 Gy per fraction compared to 2 Gy) and up to 22% in hyper-/hypofractionation (0.5 or 20 Gy per fraction compared to 2 Gy) for oxygen tensions between 0.2 and 20 mmHg typically measured clinically in hypoxic tumors. For extremely hypoxic cells (0.01 mmHg), the dose dependence of the OER becomes more pronounced (up to 36%). For high LET, OER variations up to 4% for the whole range of oxygen tensions between 0.01 and 20 mmHg were found, which were much smaller than for low LET.</p> <p>Conclusions</p> <p>The formalism presented in this paper can be used for various tissue and radiation types to estimate OER variations with dose and help to decide in clinical practice whether some dose changes in dose painting or in fractionation can bring more benefit in terms of the OER in the treatment of a specific hypoxic tumor.</p
    corecore