20 research outputs found

    Planarian Hedgehog/Patched establishes anterior–posterior polarity by regulating Wnt signaling

    Get PDF
    100年来の謎に迫る-体の極性を決める仕組みを解明しました. 京都大学プレスリリース. 2009-12-08.Despite long-standing interest, the molecular mechanisms underlying the establishment of anterior–posterior (AP) polarity remain among the unsolved mysteries in metazoans. In the planarians (a family of flatworms), canonical Wnt/β-catenin signaling is required for posterior specification, as it is in many animals. However, the molecular mechanisms regulating the posterior-specific induction of Wnt genes according to the AP polarity have remained unclear. Here, we demonstrate that Hedgehog (Hh) signaling is responsible for the establishment of AP polarity via its regulation of the transcription of Wnt family genes during planarian regeneration. We found that RNAi gene knockdown of Dugesia japonica patched (Djptc) caused ectopic tail formation in the anterior blastema of body fragments, resulting in bipolar-tails regeneration. In contrast, RNAi of hedgehog (Djhh) and gli (Djgli) caused bipolar-heads regeneration. We show that Patched-mediated Hh signaling was crucial for posterior specification, which is established by regulating the transcription of Wnt genes via downstream Gli activity. Moreover, differentiated cells were responsible for the posterior specification of undifferentiated stem cells through Wnt/β-catenin signaling. Surprisingly, Djhh was expressed in neural cells all along the ventral nerve cords (along the AP axis), but not in the posterior blastema of body fragments, where the expression of Wnt genes was induced for posteriorization. We therefore propose that Hh signals direct head or tail regeneration according to the AP polarity, which is established by Hh signaling activity along the body's preexisting nervous system

    Morphological and functional recovery of the planarian photosensing system during head regeneration

    Get PDF
    When exposed to light, planarians display a distinctive light avoidance behavior known as negative phototaxis. Such behavior is temporarily suppressed when animals are decapitated, and it is restored once the animals regenerate their heads. Head regeneration and the simple but reproducible phototactic response of planarians provides an opportunity to study the association between neuronal differentiation and the establishment of behavior in a simple, experimentally tractable metazoan. We have devised a phototaxis assay system to analyze light response recovery during head regeneration and determined that light evasion is markedly re-established 5 days after amputation. Immunohistological and in situ hybridization studies indicate that the photoreceptors and optic nerve connections to the brain begin by the fourth day of cephalic regeneration. To experimentally manipulate the light response recovery, we performed gene knockdown analysis using RNA interference (RNAi) on two genes (1020HH and eye53) previously reported to be expressed at 5 days after amputation and in the dorso-medial region of the brain (where the optic nerves project). Although RNAi failed to produce morphological defects in either the brain or the visual neurons, the recovery of the phototactic response normally observed in 5-day regenerates was significantly suppressed. The data suggest that 1020HH and eye53 may be involved in the functional recovery and maintenance of the visual system, and that the phototaxis assay presented here can be used to reliably quantify the negative phototactic behavior of planarians

    Structure of the planarian central nervous system (CNS) revealed by neuronal cell markers

    Get PDF
    Planarians are considered to be among the most primitive animals which developed the central nervous system (CNS). To understand the origin and evolution of the CNS, we have isolated a neural marker gene from a planarian, Dugesia japonica, and analyzed the structure of the planarian CNS by in situ hybridization. The planarian CNS is located on the ventral side of the body, and composed of a mass of cephalic ganglions in the head region and a pair of ventral nerve cords (VNC). Cephalic ganglions cluster independently from VNC, are more dorsal than VNC, and form an inverted U-shaped brain-like structure with nine branches on each outer side. Two eyes are located on the dorsal side of the 3(rd) branch and visual axons form optic chiasma on the dorsal-inside region of the inverted U-shaped brain. The 6(th)-9(th) branches cluster more closely and form auricles on the surface which may function as the sensory organ of taste. We found that the gross structure of the planarian CNS along the anterior-posterior (A-P) axis is strikingly similar to the distribution pattern of the "primary" neurons of vertebrate embryos which differentiate at the neural plate stage to provide a fundamental nervous system, although the vertebrate CNS is located on the dorsal side. These data suggest that the basic plan for the CNS development along the A-P axis might have been acquired at an early stage of evolution before conversion of the location of the CNS from the ventral to the dorsal side

    Brain regeneration from pluripotent stem cells in planarian

    No full text
    How can planarians regenerate their brain? Recently we have identified many genes critical for this process. Brain regeneration can be divided into five steps: (1) anterior blastema formation, (2) brain rudiment formation, (3) pattern formation, (4) neural network formation, and (5) functional recovery. Here we will describe the structure and process of regeneration of the planarian brain in the first part, and then introduce genes involved in brain regeneration in the second part. Especially, we will speculate about molecular events during the early steps of brain regeneration in this review. The finding providing the greatest insight thus far is the discovery of the nou-darake (ndk; ‘brains everywhere’ in Japanese) gene, since brain neurons are formed throughout the entire body as a result of loss of function of the ndk gene. This finding provides a clue for elucidating the molecular and cellular mechanisms underlying brain regeneration. Here we describe the molecular action of the nou-darake gene and propose a new model to explain brain regeneration and restriction in the head region of the planarians

    ERK signaling controls blastema cell differentiation during planarian regeneration.

    No full text
    The robust regenerative ability of planarians depends on a population of somatic stem cells called neoblasts, which are the only mitotic cells in adults and are responsible for blastema formation after amputation. The molecular mechanism underlying neoblast differentiation associated with blastema formation remains unknown. Here, using the planarian Dugesia japonica we found that DjmkpA, a planarian mitogen-activated protein kinase (MAPK) phosphatase-related gene, was specifically expressed in blastema cells in response to increased extracellular signal-related kinase (ERK) activity. Pharmacological and genetic [RNA interference (RNAi)] approaches provided evidence that ERK activity was required for blastema cells to exit the proliferative state and undergo differentiation. By contrast, DjmkpA RNAi induced an increased level of ERK activity and rescued the differentiation defect of blastema cells caused by pharmacological reduction of ERK activity. These observations suggest that ERK signaling plays an instructive role in the cell fate decisions of blastema cells regarding whether to differentiate or not, by inducing DjmkpA as a negative regulator of ERK signaling during planarian regeneration

    Unusually Large Number of Mutations in Asexually Reproducing Clonal Planarian <i>Dugesia japonica</i>

    Get PDF
    <div><p>We established a laboratory clonal strain of freshwater planarian (<i>Dugesia japonica</i>) that was derived from a single individual and that continued to undergo autotomous asexual reproduction for more than 20 years, and we performed large-scale genome sequencing and transcriptome analysis on it. Despite the fact that a completely clonal strain of the planarian was used, an unusually large number of mutations were detected. To enable quantitative genetic analysis of such a unique organism, we developed a new model called the Reference Gene Model, and used it to conduct large-scale transcriptome analysis. The results revealed large numbers of mutations not only outside but also inside gene-coding regions. Non-synonymous SNPs were detected in 74% of the genes for which valid ORFs were predicted. Interestingly, the high-mutation genes, such as metabolism- and defense-related genes, were correlated with genes that were previously identified as diverse genes among different planarian species. Although a large number of amino acid substitutions were apparently accumulated during asexual reproduction over this long period of time, the planarian maintained normal body-shape, behaviors, and physiological functions. The results of the present study reveal a unique aspect of asexual reproduction.</p></div
    corecore