7 research outputs found

    Occupancy Classification of Position Weight Matrix-Inferred Transcription Factor Binding Sites

    Get PDF
    BACKGROUND: Computational prediction of Transcription Factor Binding Sites (TFBS) from sequence data alone is difficult and error-prone. Machine learning techniques utilizing additional environmental information about a predicted binding site (such as distances from the site to particular chromatin features) to determine its occupancy/functionality class show promise as methods to achieve more accurate prediction of true TFBS in silico. We evaluate the Bayesian Network (BN) and Support Vector Machine (SVM) machine learning techniques on four distinct TFBS data sets and analyze their performance. We describe the features that are most useful for classification and contrast and compare these feature sets between the factors. RESULTS: Our results demonstrate good performance of classifiers both on TFBS for transcription factors used for initial training and for TFBS for other factors in cross-classification experiments. We find that distances to chromatin modifications (specifically, histone modification islands) as well as distances between such modifications to be effective predictors of TFBS occupancy, though the impact of individual predictors is largely TF specific. In our experiments, Bayesian network classifiers outperform SVM classifiers. CONCLUSIONS: Our results demonstrate good performance of machine learning techniques on the problem of occupancy classification, and demonstrate that effective classification can be achieved using distances to chromatin features. We additionally demonstrate that cross-classification of TFBS is possible, suggesting the possibility of constructing a generalizable occupancy classifier capable of handling TFBS for many different transcription factors

    Ligand recognition by the γΎ TCR and discrimination between homeostasis and stress conditions

    No full text
    T lymphocytes comprise cells expressing either an αÎČ or a γΎ TCR. The riddle how αÎČ TCRs are triggered by specific peptides presented in the context of MHC was elucidated some time ago. In contrast, the mechanisms that underlie antigen recognition by γΎ TCRs are still baffling the scientific community. It is clear that activation of γΎ TCRs does not necessarily depend on MHC antigen presentation. To date, diverse and largely host-cell-derived molecules have been identified as cognate antigens for the γΎ TCR. However, for most γΎ TCRs, the activating ligand is still unknown and many open questions with regard to physiological relevance and generalizable concepts remain. Especially the question of how γΎ T cells can distinguish homeostatic from stress conditions via their TCR remains largely unresolved. Recent discoveries in the field might have paved the way towards a better understanding of antigen recognition by the γΎ TCR and have made it conceivable to revise the current knowledge and contextualize the new findings

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore