1,875 research outputs found
The Light and Period Variations of the Eclipsing Binary AA Ursae Majoris
We present new multiband CCD photometry for AA UMa made on 8 nights between
January and March 2009; the light curves are the first ever compiled.
Historical light curves, as well as ours, display partial eclipses and inverse
O'Connell effects with Max I fainter than Max II. Among possible spot models, a
cool spot on either of the component stars and its variability with time permit
good light-curve representations for the system. A total of 194 eclipse timings
over 81 yrs, including our five timings, were used for ephemeris computations.
We found that the orbital period of the system has varied due to a periodic
oscillation overlaid on an upward parabolic variation. The continuous period
increase at a fractional rate of 1.310 is consistent with
that calculated from the W-D code and can be interpreted as a thermal mass
transfer from the less to the more massive secondary star at a rate of
6.610 M yr. The periodic component is in
satisfactory accord with a light-time effect due to an unseen companion with a
period of 28.2 yrs, a semi-amplitude of 0.007 d, and a minimum mass of =0.25 but this period variation could also arise from
magnetic activity.Comment: 23 pages, including 5 figures and 8 tables, accepted for publication
in PAS
Fault detection and diagnosis of a plastic film extrusion process
This paper presents a new approach to the design of a model-based fault detection and diagnosis system for application to a plastic film extrusion process. The design constructs a residual generator via parity relations. A multi-objective optimisation problem must be solved in order for the residual to be sensitive to faults but insensitive to disturbances and modelling errors. In this paper, we exploit a genetic algorithm for solving this multi-objective optimisation problem and the resulting fault detection and diagnosis system is applied to a first-principles model of a plastic film extrusion process. Simulation results demonstrate that various types of faults can be detected and diagnosed successfully
Amplitude death in a ring of nonidentical nonlinear oscillators with unidirectional coupling
We study the collective behaviors in a ring of coupled nonidentical nonlinear
oscillators with unidirectional coupling, of which natural frequencies are
distributed in a random way. We find the amplitude death phenomena in the case
of unidirectional couplings and discuss the differences between the cases of
bidirectional and unidirectional couplings. There are three main differences;
there exists neither partial amplitude death nor local clustering behavior but
oblique line structure which represents directional signal flow on the
spatio-temporal patterns in the unidirectional coupling case. The
unidirectional coupling has the advantage of easily obtaining global amplitude
death in a ring of coupled oscillators with randomly distributed natural
frequency. Finally, we explain the results using the eigenvalue analysis of
Jacobian matrix at the origin and also discuss the transition of dynamical
behavior coming from connection structure as coupling strength increases.Comment: 14 pages, 11 figure
The Light and Period Variations of the Eclipsing Binary BX Draconis
New CCD photometric observations of BX Dra were obtained for 26 nights from
2009 April to 2010 June. The long-term photometric behaviors of the system are
presented from detailed studies of the period and light variations, based on
the historical data and our new observations. All available light curves
display total eclipses at secondary minima and inverse O'Connell effects with
Max I fainter than Max II, which are satisfactorily modeled by adding the
slightly time-varying hot spot on the primary star. A total of 87 times of
minimum light spanning over about 74 yrs, including our 22 timing measurements,
were used for ephemeris computations. Detailed analysis of the O-C diagram
showed that the orbital period has changed in combinations with an upward
parabola and a sinusoidal variation. The continuous period increase with a rate
of +5.65 \times 10^-7 d yr^-1 is consistent with that calculated from the
Wilson-Devinney synthesis code. It can be interpreted as a mass transfer from
the secondary to the primary star at a rate of 2.74 \times 10^-7 M\odot yr^-1,
which is one of the largest rates for contact systems. The most likely
explanation of the sinusoidal variation with a period of 30.2 yrs and a
semi-amplitude of 0.0062 d is a light-traveltime effect due to the existence of
a circumbinary object. We suggest that BX Dra is probably a triple system,
consisting of a primary star with a spectral type of F0, its secondary
component of spectral type F1-2, and an unseen circumbinary object with a
minimum mass of M3 = 0.23 M\odot.Comment: 24 pages, including 5 figures and 9 tables, accepted for publication
in PAS
Experimental Study on Coordinated Heading Control of Four Vessels Moored Side by Side
A floating type liquefied natural gas (LNG) bunkering terminal has been under development in Korea since 2014; the terminal is designed to receive LNG from an LNG carrier (LNGC) and transfer it to two other LNG bunkering shuttles (LNGBS) simultaneously. The operational feasibility of the LNG loading and unloading processes has been confirmed. When four vessels are moored side by side with mooring ropes and fenders, their positions must be maintained within the designed allowable criteria. In addition, the floating bunkering terminal (FLBT) has its own mooring system, an internal turret with catenary mooring lines and stern tunnel thrusters to maintain its own position and control the vessel heading. In this study, we investigated the operational feasibility of the FLBT during the LNG loading and unloading operations with four vessel mooring configurations and heading controls. A series of model tests was done in the ocean engineering basin of the Korea Research Institute of Ships and Ocean engineering. The motion responses of the four vessels were determined using an optical measurement system, and the tensile loads on ship-to-ship mooring ropes and the compressive loads on ship-to-ship fenders were measured using one-axis load cells. A white noise test was done and the results were compared with the numerical results for the purpose of validation. Then, four combined environmental conditions were presented both without heading control and with several heading control cases. Finally, we determined the available safe bunkering heading ranges taking into account the tensile loads on the mooring ropes
Neuroprotective and anti-oxidant effects of caffeic acid isolated from Erigeron annuus leaf
<p>Abstract</p> <p>Background</p> <p>Since oxidative stress has been implicated in a neurodegenerative disease such as Alzheimer's disease (AD), natural antioxidants are promising candidates of chemopreventive agents. This study examines antioxidant and neuronal cell protective effects of various fractions of the methanolic extract of <it>Erigeron annuus </it>leaf and identifies active compounds of the extract.</p> <p>Methods</p> <p>Antioxidant activities of the fractions from <it>Erigeron annuus </it>leaf were examined with [2,2-azino-bis(3-ethylbenz thiazoline-6-sulfonic acid diammonium salt)] (ABTS) and ferric reducing antioxidant power (FRAP) assays. Neuroprotective effect of caffeic acid under oxidative stress induced by H<sub>2</sub>O<sub>2 </sub>was investigated with [3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) and lactate dehydrogenase (LDH) assays.</p> <p>Results</p> <p>This study demonstrated that butanol fraction had the highest antioxidant activity among all solvent fractions from methanolic extract <it>E. annuus </it>leaf. Butanol fraction had the highest total phenolic contents (396.49 mg of GAE/g). Caffeic acid, an isolated active compound from butanol fraction, showed dose-dependent <it>in vitro </it>antioxidant activity. Moreover, neuronal cell protection against oxidative stress induced cytotoxicity was also demonstrated.</p> <p>Conclusion</p> <p><it>Erigeron annuus </it>leaf extracts containing caffeic acid as an active compound have antioxidative and neuroprotective effects on neuronal cells.</p
Far-Ultraviolet Cooling Features of the Antlia Supernova Remnant
We present far-ultraviolet observations of the Antlia supernova remnant
obtained with Far-ultraviolet IMaging Spectrograph (FIMS, also called SPEAR).
The strongest lines observed are C IV 1548,1551 and C III 977. The C IV
emission of this mixed-morphology supernova remnant shows a clumpy
distribution, and the line intensity is nearly constant with radius. The C III
977 line, though too weak to be mapped over the whole remnant, is shown to vary
radially. The line intensity peaks at about half the radius, and drops at the
edge of the remnant. Both the clumpy distribution of C IV and the rise in the C
IV to C III ratio towards the edge suggest that central emission is from
evaporating cloudlets rather than thermal conduction in a more uniform, dense
medium.Comment: 9 pages, 4 figures, will be published in ApJ December 1, 2007, v670n2
issue. see http://astro.snu.ac.kr/~jhshinn/ms.pd
- …