943 research outputs found

    Rapid volumetric brain changes after acute psychosocial stress

    Get PDF
    Stress is an important trigger for brain plasticity: Acute stress can rapidly affect brain activity and functional connectivity, and chronic or pathological stress has been associated with structural brain changes. Measures of structural magnetic resonance imaging (MRI) can be modified by short-term motor learning or visual stimulation, suggesting that they also capture rapid brain changes. Here, we investigated volumetric brain changes (together with changes in T1 relaxation rate and cerebral blood flow) after acute stress in humans as well as their relation to psychophysiological stress measures.Sixty-seven healthy men (25.8±2.7 years) completed a standardized psychosocial laboratory stressor (Trier Social Stress Test) or a control version while blood, saliva, heart rate, and psychometrics were sampled. Structural MRI (T1 mapping / MP2RAGE sequence) at 3T was acquired 45 min before and 90 min after intervention onset. Grey matter volume (GMV) changes were analysed using voxel-based morphometry. Associations with endocrine, autonomic, and subjective stress measures were tested with linear models.We found significant group-by-time interactions in several brain clusters including anterior/mid-cingulate cortices and bilateral insula: GMV was increased in the stress group relative to the control group, in which several clusters showed a GMV decrease. We found a significant group-by-time interaction for cerebral blood flow, and a main effect of time for T1 values (longitudinal relaxation time). In addition, GMV changes were significantly associated with state anxiety and heart rate variability changes.Such rapid GMV changes assessed with VBM may be induced by local tissue adaptations to changes in energy demand following neural activity. Our findings suggest that endogenous brain changes are counteracted by acute psychosocial stress, which emphasizes the importance of considering homeodynamic processes and generally highlights the influence of stress on the brain

    Mixing of magnetic and phononic excitations in incommensurate Spin-Peierls systems

    Full text link
    We analyze the excitation spectra of a spin-phonon coupled chain in the presence of a soliton. This is taken as a microscopic model of a Spin-Peierls material placed in a high magnetic field. We show, by using a semiclassical approximation in the bosonized representation of the spins that a trapped magnetic state obtained in the adiabatic approximation is destroyed by dynamical phonons. Low energy states are phonons trapped by the soliton. When the magnetic gap is smaller than the phonon frequencies the only low energy state is a mixed magneto-phonon state with the energy of the gap. We emphasize that our results are relevant for the Raman spectra of the inorganic Spin-Peierls material CuGeO3_3.Comment: 5 pages, latex, 2 figures embedded in the tex

    The Little Review on Leptogenesis

    Full text link
    This is a brief review on the scenario of baryogenesis through leptogenesis. Leptogenesis is an appealing scenario that may relate the observed baryon asymmetry in the Universe to the low-energy neutrino data. In this review talk, particular emphasis is put on recent developments on the field, such as the flavourdynamics of leptogenesis and resonant leptogenesis near the electroweak phase transition. It is illustrated how these recent developments enable the modelling of phenomenologically predictive scenarios that can directly be tested at the LHC and indirectly in low-energy experiments of lepton-number and lepton-flavour violation.Comment: 15 pages, based on a plenary presentation given at the DISCRETE'08 Symposium, 11-16 December 2008, Valencia, Spai

    On multiplicity correlations in the STAR data

    Full text link
    The STAR data on the multiplicity correlations between narrow psudorapidity bins in the pp and AuAu collisions are discussed. The PYTHIA 8.145 generator is used for the pp data, and a naive superposition model is presented for the AuAu data. It is shown that the PYTHIA generator with default parameter values describes the pp data reasonably well, whereas the superposition model fails to reproduce the centrality dependence seen in the data. Some possible reasons for this failure and a comparison with other models are presented.Comment: 8 pages, 3 figure

    Real-time MRI for dynamic assessment of gastroesophageal reflux disease: comparison to pH-metry and impedance

    Get PDF
    Purpose To evaluate the diagnostic potential of real-time MRI for dynamic assessment of gastroesophageal reflux in patients with GERD (gastroesophageal reflux disease)-like symptoms compared to pH-metry and impedance. Methods Patients who underwent real-time MRI and pH-metry between 2015–2018 were included in this retrospective study. Real-time MRI at 3 T was achieved by undersampled radial FLASH acquisitions with iterative image reconstruction by NLINV. Real-time MRI visualized transit of pineapple juice through the gastroesophageal junction and during Valsalva maneuver. MRI results were compared to 24 h pH-metry to assess acidic reflux (following Lyon Consensus guidelines) and to impedance to assess non-acidic reflux. A standard 2 × 2 table was chosen to calculate diagnostic performance. Results 91/93 eligible patients fulfilled inclusion criteria (male n = 49; female n = 42; median age 55 y). All MRI studies were successfully completed without adverse events at a mean examination time of 15 min. On real-time MRI, reflux was evident in 60 patients (66 %). pH-metry revealed reflux in 41 patients (45 %), and impedance in 54 patients (59 %). Compared to pH-metry and impedance, real-time MRI sensitivity was 0.78 (95 % CI: 0.66-0.87), specificity 0.67 (95 % CI: 0.45-0.84) and PPV 0.87 (95 % CI: 0.75-0.94). Conclusion Real-time MRI is an imaging method for assessment of gastroesophageal reflux in patients with GERD-like symptoms. Considering its high positive predictive value, real-time MRI can accurately identify patients in which further invasive testing with pH-metry and impedance might be considered

    Assessment of esophageal motility disorders by real-time MRI

    Get PDF
    Purpose To investigate imaging findings of esophageal motility disorders on dynamic real-time. Material and methods 102 patients with GERD-like symptoms were included in this retrospective study between 2015−2018. Dynamic real-time MRI visualized the transit of a 10 mL pineapple juice bolus through the esophagus and EGJ with a temporal resolution of 40 ms. Dynamic and anatomic parameters were measured by consensus reading. Imaging findings were compared to HRM utilizing the Chicago classification of esophageal motility disorders, v3.0. Results All 102 patients completed real-time MRI in a median examination time of 15 min. On HRM, 14 patients presented with disorders with EGJ outlet obstruction (EGJOO) (13.7 %), 7 patients with major disorders of peristalsis (6.9 %), and 32 patients with minor disorders of peristalsis (31.4 %). HRM was normal in 49 patients (48.0 %). Incomplete bolus clearance was significantly more frequent in patients with esophageal motility disorders on HRM than in patients with normal HRM (p = 0.0002). In patients with motility disorders with EGJOO and major disorders of peristalsis, the esophageal diameter tended to be wider (23.6 ± 8.0 vs. 21.2 ± 3.5 mm, p = 0.089) and the sphincter length longer (19.7 ± 7.3 vs. 16.7 ± 3.0 mm, p = 0.091) compared to patients with normal HRM. 3/7 patients with achalasia type II were correctly identified by real-time MRI and one further achalasia type II patient was diagnosed with a motility disorder on MRI films. The other 3/7 patients presented no specific imaging features. Conclusion Real-time MRI is an auxiliary diagnostic tool for the assessment of swallowing events. Imaging parameters may assist in the detection of esophageal motility disorders

    Assessment of esophagogastric junction morphology by dynamic real-time MRI: comparison of imaging features to high-resolution manometry

    Get PDF
    Purpose To assess the esophagogastric junction (EGJ) on real-time MRI and compare imaging parameters to EGJ morphol- ogy on high-resolution manometry (HRM). Methods A total of 105 of 117 eligible patients who underwent real-time MRI and high-resolution manometry for GERD- like symptoms between 2015 and 2018 at a single center were retrospectively evaluated (male n = 57; female n = 48; mean age 52.5 ± 15.4 years). Real-time MRI was performed at a median investigation time of 15 min (1 frame/40 ms). On HRM, EGJ morphology was assessed according to the Chicago classification of esophageal motility disorders. Real-time MRI was performed at 3 T using highly undersampled radial fast low-angle shot acquisitions with NLINV image reconstruction. A 10 mL pineapple juice bolus served as oral contrast agent at supine position. Real-time MRI films of the EGJ were acquired during swallowing events and during Valsalva maneuver. Anatomic and functional MRI parameters were compared to EGJ morphology on HRM. Results On HRM, n = 42 patients presented with EGJ type I (40.0%), n= 33 with EGJ type II (31.4%), and n= 30 with EGJ type III (28.6%). On real-time MRI, hiatal hernia was more common in patients with EGJ type III (66.7%) than in patients with EGJ type I (26.2%) and EGJ type II (30.3%; p < 0.001). Sliding hiatal hernia was more frequent in patients with EGJ type II (33.3%) than in patients with EGJ type III (16.7%) and EGJ type I (7.1%; p = 0.017). The mean esophagus–fundus angle of patients was 85 ± 31° at rest and increased to 101 ± 36° during Valsalva maneuver. Conclusion Real-time MRI is a non-invasive imaging method for assessment of the esophagogastric junction. Real-time MRI can visualize dynamic changes of the EGJ during swallowing events

    Wishart and Anti-Wishart random matrices

    Full text link
    We provide a compact exact representation for the distribution of the matrix elements of the Wishart-type random matrices A†AA^\dagger A, for any finite number of rows and columns of AA, without any large N approximations. In particular we treat the case when the Wishart-type random matrix contains redundant, non-random information, which is a new result. This representation is of interest for a procedure of reconstructing the redundant information hidden in Wishart matrices, with potential applications to numerous models based on biological, social and artificial intelligence networks.Comment: 11 pages; v2: references updated + some clarifications added; v3: version to appear in J. Phys. A, Special Issue on Random Matrix Theor

    Magnetic vortex oscillator driven by dc spin-polarized current

    Full text link
    Transfer of angular momentum from a spin-polarized current to a ferromagnet provides an efficient means to control the dynamics of nanomagnets. A peculiar consequence of this spin-torque, the ability to induce persistent oscillations of a nanomagnet by applying a dc current, has previously been reported only for spatially uniform nanomagnets. Here we demonstrate that a quintessentially nonuniform magnetic structure, a magnetic vortex, isolated within a nanoscale spin valve structure, can be excited into persistent microwave-frequency oscillations by a spin-polarized dc current. Comparison to micromagnetic simulations leads to identification of the oscillations with a precession of the vortex core. The oscillations, which can be obtained in essentially zero magnetic field, exhibit linewidths that can be narrower than 300 kHz, making these highly compact spin-torque vortex oscillator devices potential candidates for microwave signal-processing applications, and a powerful new tool for fundamental studies of vortex dynamics in magnetic nanostructures.Comment: 14 pages, 4 figure
    • …
    corecore