34 research outputs found

    Empirical estimates of prostate cancer overdiagnosis by age and prostate-specific antigen

    Get PDF
    Background: Prostate cancer screening depends on a careful balance of benefits, in terms of reduced prostate cancer mortality, and harms, in terms of overdiagnosis and overtreatment. We aimed to estimate the effect on overdiagnosis of restricting prostate specific antigen (PSA) testing by age and baseline PSA.Methods: Estimates of the effects of age on overdiagnosis were based on population based incidence data from the US Surveillance, Epidemiology and End Results database. To investigate the relationship between PSA and overdiagnosis, we used two separate cohorts subject to PSA testing in clinical trials (n = 1,577 and n = 1,197) and a population-based cohort of Swedish men not subject to PSA-screening followed for 25 years (n = 1,162).Results: If PSA testing had been restricted to younger men, the number of excess cases associated with the introduction of PSA in the US would have been reduced by 85%, 68% and 42% for age cut-offs of 60, 65 and 70, respectively. The risk that a man with screen-detected cancer at age 60 would not subsequently lead to prostate cancer morbidity or mortality decreased exponentially as PSA approached conventional biopsy thresholds. For PSAs below 1 ng/ml, the risk of a positive biopsy is 65 (95% CI 18.2, 72.9) times greater than subsequent prostate cancer mortality.Conclusions: Prostate cancer overdiagnosis has a strong relationship to age and PSA level. Restricting screening in men over 60 to those with PSA above median (>1 ng/ml) and screening men over 70 only in selected circumstances would importantly reduce overdiagnosis and change the ratio of benefits to harms of PSA-screening

    Remodeling the Proteostasis Network to Rescue Glucocerebrosidase Variants by Inhibiting ER-Associated Degradation and Enhancing ER Folding

    Get PDF
    Gaucher’s disease (GD) is characterized by loss of lysosomal glucocerebrosidase (GC) activity. Mutations in the gene encoding GC destabilize the protein’s native folding leading to ER-associated degradation (ERAD) of the misfolded enzyme. Enhancing the cellular folding capacity by remodeling the proteostasis network promotes native folding and lysosomal activity of mutated GC variants. However, proteostasis modulators reported so far, including ERAD inhibitors, trigger cellular stress and lead to induction of apoptosis. We show herein that lacidipine, an L-type Ca2+ channel blocker that also inhibits ryanodine receptors on the ER membrane, enhances folding, trafficking and lysosomal activity of the most severely destabilized GC variant achieved via ERAD inhibition in fibroblasts derived from patients with GD. Interestingly, reprogramming the proteostasis network by combining modulation of Ca2+ homeostasis and ERAD inhibition remodels the unfolded protein response and dramatically lowers apoptosis induction typically associated with ERAD inhibition

    Predictions for the future of kallikrein-related peptidases in molecular diagnostics

    Get PDF
    Kallikrein-related peptidases (KLKs) form a cancer-related ensemble of serine proteases. This multigene family hosts the most widely used cancer biomarker that is PSA-KLK3, with millions of tests performed annually worldwide. The present report provides an overview of the biomarker potential of the extended KLK family (KLK1-KLK15) in various disease settings and envisages approaches that could lead to additional KLK-driven applications in future molecular diagnostics. Particular focus is given on the inclusion of KLKs into multifaceted cancer biomarker panels that provide enhanced diagnostic, prognostic and/or predictive accuracy in several human malignancies. Such panels have been described so far for prostate, ovarian, lung and colorectal cancers. The role of KLKs as biomarkers in non-malignant disease settings, such as Alzheimer’s disease and multiple sclerosis, is also commented upon. Predictions are given on the challenges and future directions regarding clinically oriented KLK research

    Aβ Mediated Diminution of MTT Reduction—An Artefact of Single Cell Culture?

    Get PDF
    The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) reduction assay is a frequently used and easily reproducible method to measure beta-amyloid (Aβ) toxicity in different types of single cell culture. To our knowledge, the influence of Aβ on MTT reduction has never been tested in more complex tissue. Initially, we reproduced the disturbed MTT reduction in neuron and astroglia primary cell cultures from rats as well as in the BV2 microglia cell line, utilizing four different Aβ species, namely freshly dissolved Aβ (25-35), fibrillar Aβ (1-40), oligomeric Aβ (1-42) and oligomeric Aβ (1-40). In contrast to the findings in single cell cultures, none of these Aβ species altered MTT reduction in rat organotypic hippocampal slice cultures (OHC). Moreover, application of Aβ to acutely isolated hippocampal slices from adult rats and in vivo intracerebroventricular injection of Aβ also did not influence the MTT reduction in the respective tissue. Failure of Aβ penetration into the tissue cannot explain the differences between single cells and the more complex brain tissue. Thus electrophysiological investigations disclosed an impairment of long-term potentiation (LTP) in the CA1 region of hippocampal slices from rat by application of oligomeric Aβ (1-40), but not by freshly dissolved Aβ (25-35) or fibrillar Aβ (1-40). In conclusion, the experiments revealed a glaring discrepancy between single cell cultures and complex brain tissue regarding the effect of different Aβ species on MTT reduction. Particularly, the differential effect of oligomeric versus other Aβ forms on LTP was not reflected in the MTT reduction assay. This may indicate that the Aβ oligomer effect on synaptic function reflected by LTP impairment precedes changes in formazane formation rate or that cells embedded in a more natural environment in the tissue are less susceptible to damage by Aβ, raising cautions against the consideration of single cell MTT reduction activity as a reliable assay in Alzheimer's drug discovery studies

    European Randomized Study of Screening for Prostate Cancer: achievements and presentation

    No full text
    corecore