494 research outputs found

    SAFE: Secure-Roaming Agents for E-commerce

    Get PDF
    The development of the Internet has made a powerful impact on the concept of commerce. E-commerce, a new way to conduct business, is gaining more and more popularity. Despite its rapid growth, there are limitations that hinder the expansion of e-commerce. The primary concern for most people when talking about on-line shopping is security. Due to the open nature of the Internet, personal financial details necessary for on-line shopping can be stolen if sufficient security mechanism is not put in place. How to provide the necessary assurance of security to consumers remains a question mark despite various past efforts. Another concern is the lack of intelligence. The Internet is an ocean of information depository. It is rich in content but lacks the necessary intelligent tools to help one locate the correct piece of information. Intelligent agent, a piece of software that can act on behalf of its owner intelligently, is designed to fill this gap. However, no matter how intelligent an agent is, if it remains on its owner’s machine and does not have any roaming capability, its functionality is limited. With the roaming capability, more security concerns arise. In response to these concerns, SAFE, Secure roaming Agent For E-commerce, is designed to provide secure roaming capability to intelligent agents

    Agent fabrication and its implementation for agent-based electronic commerce

    Get PDF
    In the last decade, agent-based e-commerce has emerged as a potential role for the next generation of e-commerce. How to create agents for e-commerce applications has become a serious consideration in this field. This paper proposes a new scheme named agent fabrication and elaborates its implementation in multi-agent systems based on the SAFER (Secure Agent Fabrication, Evolution & Roaming) architecture. First, a conceptual structure is proposed for software agents carrying out e-commerce activities. Furthermore, agent module suitcase is defined to facilitate agent fabrication. With these definitions and facilities in the SAFER architecture, the formalities of agent fabrication are elaborated. In order to enhance the security of agent-based e-commerce, an infrastructure of agent authorization and authentication is integrated in agent fabrication. Our implementation and prototype applications show that the proposed agent fabrication scheme brings forth a potential solution for creating agents in agent-based e-commerce applications

    Multiorder neurons for evolutionary higher-order clustering and growth

    Get PDF
    This letter proposes to use multiorder neurons for clustering irregularly shaped data arrangements. Multiorder neurons are an evolutionary extension of the use of higher-order neurons in clustering. Higher-order neurons parametrically model complex neuron shapes by replacing the classic synaptic weight by higher-order tensors. The multiorder neuron goes one step further and eliminates two problems associated with higher-order neurons. First, it uses evolutionary algorithms to select the best neuron order for a given problem. Second, it obtains more information about the underlying data distribution by identifying the correct order for a given cluster of patterns. Empirically we observed that when the correlation of clusters found with ground truth information is used in measuring clustering accuracy, the proposed evolutionary multiorder neurons method can be shown to outperform other related clustering methods. The simulation results from the Iris, Wine, and Glass data sets show significant improvement when compared to the results obtained using self-organizing maps and higher-order neurons. The letter also proposes an intuitive model by which multiorder neurons can be grown, thereby determining the number of clusters in data

    GPU acceleration of time-domain fluorescence lifetime imaging

    Get PDF
    Fluorescence lifetime imaging microscopy (FLIM) plays a significant role in biological sciences, chemistry, and medical research. We propose a Graphic Processing Units (GPUs) based FLIM analysis tool suitable for high-speed and flexible time-domain FLIM applications. With a large number of parallel processors, GPUs can significantly speed up lifetime calculations compared to CPU-OpenMP (parallel computing with multiple CPU cores) based analysis. We demonstrate how to implement and optimize FLIM algorithms on GPUs for both iterative and non-iterative FLIM analysis algorithms. The implemented algorithms have been tested on both synthesized and experimental FLIM data. The results show that at the same precision the GPU analysis can be up to 24-fold faster than its CPU-OpenMP counterpart. This means that even for high precision but time-consuming iterative FLIM algorithms, GPUs enable fast or even real-time analysis

    Design of a VLSI scan conversion processor for high performance 3-D graphics systems

    Get PDF
    Scan conversion processing is the bottleneck in the image generation process. To solve the problem of smooth shading and hidden surface elimination, a new processor architecture has been invented which has been labeled as a scan conversion processor architecture (SCP). The SCP is designed to perform hidden surface elimination and scan conversion for 64 pixels. The color intensities are dual-buffered so that when one buffer is being updated the other can be scanned out. Z-depth is used to perform the hidden surface elimination. The key operation performed by the SCP is the evaluation of linear functions of a form like F(X,Y) = A * X + B * Y + C. The computation is further simplified by using incremental addition. The z-depth buffer and the color buffers are incorporated onto the same chip. The SCP receives from its preprocessor the information for the definition of polygons and the computation of z-depth and RGB color intensities;Many copies of this processor will be used in a high performance graphics system. The SCP processes one polygon at a time. Many polygons can be processed at the same time when several Bounds-Checking Processors are added to the system. Each Bounds-Checking Processor handles a specific area of the display screen. If one polygon has intersection with a Bounds-Checking Processor\u27s controlled area, the related information will be rebroadcasted to SCPs in that area. The SCP chip uses about 26,000 transistors. 16 SCPs can be put on one chip if the 1 [mu]m CMOS technology is used

    Intelligent Product Brokering for E-Commerce: An Incremental Approach to Unaccounted Attribute Detection

    Get PDF
    This research concentrates on designing generic product-brokering agent to understand user preference towards a product category and recommends a list of products to the user according to the preference captured by the agent. The proposed solution is able to detect both quantifiable and non-quantifiable attributes through a user feedback system. Unlike previous approaches, this research allows the detection of unaccounted attributes that are not within the ontology of the system. No tedious change of the algorithm, database, or ontology is required when a new product attribute is introduced. This approach only requires the attribute to be within the description field of the product. The system analyzes the general product descriptions field and creates a list of candidate attributes affecting the user’s preference. A genetic algorithm verifies these candidate attributes and excess attributes are identified and filtered off. A prototype has been created and our results show positive results in the detection of unaccounted attributes affecting a user

    A Family of Controllable Cellular Automata for Pseudorandom Number Generation

    Get PDF
    In this paper, we present a family of novel Pseudorandom Number Generators (PRNGs) based on Controllable Cellular Automata (CCA) ─ CCA0, CCA1, CCA2 (NCA), CCA3 (BCA), CCA4 (asymmetric NCA), CCA5, CCA6 and CCA7 PRNGs. The ENT and DIEHARD test suites are used to evaluate the randomness of these CCA PRNGs. The results show that their randomness is better than that of conventional CA and PCA PRNGs while they do not lose the structure simplicity of 1-d CA. Moreover, their randomness can be comparable to that of 2-d CA PRNGs. Furthermore, we integrate six different types of CCA PRNGs to form CCA PRNG groups to see if the randomness quality of such groups could exceed that of any individual CCA PRNG. Genetic Algorithm (GA) is used to evolve the configuration of the CCA PRNG groups. Randomness test results on the evolved CCA PRNG groups show that the randomness of the evolved groups is further improved compared with any individual CCA PRNG

    Migration control for mobile agents based on passport and visa

    Get PDF
    Research on mobile agents has attracted much attention as this paradigm has demonstrated great potential for the next-generation e-commerce. Proper solutions to security-related problems become key factors in the successful deployment of mobile agents in e-commerce systems. We propose the use of passport and visa (P/V) for securing mobile agent migration across communities based on the SAFER e-commerce framework. P/V not only serves as up-to-date digital credentials for agent-host authentication, but also provides effective security mechanisms for online communities to control mobile agent migration. Protection for mobile agents, network hosts, and online communities is enhanced using P/V. We discuss the design issues in details and evaluate the implementation of the proposed system

    Using Work-Flow Software to Support Office Collaboration

    Get PDF

    Fluorescence lifetime estimation method for incomplete decay

    Get PDF
    A new incomplete decay signal model is proposed to describe the incomplete decay effects in a time- correlated single-photon counting (TCSPC) based fluorescence lifetime imaging (FLIM) system. Based on this model, we modified a MUltiple SIgnal Classification (MUSIC) algorithm to eliminate the incomplete decay effects. Monte Carlo simulations were carried out to demonstrate the performances of the proposed approach. Simulations show that the proposed method is insensitive to the laser pulse rate and has a larger lifetime dynamic range compared with previously reported approaches. As far as we know, this new method is the first non-fitting method that can resolve incomplete decay effects for multi-exponential decays
    corecore