3 research outputs found
Testing for SARS-CoV-2 at the core of voluntary collective isolation: Lessons from the indigenous populations living in the Amazon region in Ecuador
Voluntary collective isolation has been proposed to be the best response to COVID-19 for indigenous populations. While the potential value of voluntary collective isolation is appealing, the feasibility of this approach needs empirical evidence to support it as the best response to protect indigenous communities from COVID-19. This paper describes our experience during SARS-CoV-2 surveillance among Waorani communities in the Ecuadorian Amazonian region, from June to September 2020. We found that self-isolation strategies failed to contain the spread of SARS-CoV-2 from main urban areas to remote and isolated comunities
A comparative analysis of SARS-CoV-2 viral load across different altitudes
SARS-CoV-2 has spread throughout the world, including areas located at high or very high altitudes. There is a debate about the role of high altitude hypoxia on viral transmission, incidence, and COVID-19 related mortality. This is the first comparison of SARS-CoV-2 viral load across elevations ranging from 0 to 4300 m. To describe the SARS-CoV-2 viral load across samples coming from 62 cities located at low, moderate, high, and very high altitudes in Ecuador. An observational analysis of viral loads among nasopharyngeal swap samples coming from a cohort of 4929 patients with a RT-qPCR test positive for SARS-CoV-2. The relationship between high and low altitude only considering our sample of 4929 persons is equal in both cases and not significative (p-value 0.19). In the case of low altitude, adding the sex variable to the analysis, it was possible to find a significative difference between men and women (p-value < 0.05). Considering initially sex and then altitude, it was possible to find a significative difference between high and low altitude for men (p-value 0.05). There is not enough evidence to state that viral load is affected directly by altitude range but adding a new variable as sex in the analysis shows that the presence of new variables influences the relationship of altitude range and viral load. There is no evidence that viral loads (Ct and copies/ml) differ at low or high altitude. Using sex as a co-factor, we found that men have higher viral loads than women at low and moderate altitude locations, while living at high altitude, no differences were found. When Ct values were aggregated by low, moderate, and high viral load, we found no significant differences when sex was excluded from the analysis. We conclude that viral load is not directly affected by altitude, but COVID-19 incidence and mortality are rather affected by socio-demographic and idiosyncratic dynamics
Massive testing in the Galapagos Islands and low positivity rate to control SARS-CoV-2 spread during the first semester of the COVID-19 pandemic: a story of success for Ecuador and South America
Introduction: During the first months of the COVID-19 pandemic in Latin America, countries like Ecuador, Peru and Colombia experienced chaotic scenarios with public health systems collapsing and lack of testing capacity to control the spread of the virus. In main cities like Guayaquil in Ecuador, dramatic situations such as corpses in the streets were internationally broadcasted.
Methods: While the COVID-19 pandemic was devastating South America, SARS-CoV-2 transmission was successfully managed in the Galapagos Islands due to the implementation of a massive screening strategy including hospitalized and community-dwelling populations, and travel restrictions facilitated by its geographical location (972 km from the Ecuadorian continental territory). Floreana Island was one of the few locations in the world that remained COVID-19 free during 2020.
Results: In this study, we retrospectively analyzed the data related to SARS-CoV-2 massive testing campaigns from April to September 2020 in the Galapagos Islands, and found this territory to have the lowest positivity rate in South America (4.8-6.7%) and the highest testing ratio among Ecuadorian provinces (9.87% of the population, which is 2480 out of 25 124 inhabitants) during the first wave of the COVID-19 pandemic.
Conclusion: This story of success was possible because of the interinstitutional collaboration between the regional government of Galapagos Islands (Consejo de Gobierno), the local authorities (Gobiernos Autonomos Descentralizados de Santa Cruz, San Cristobal and Isabela), the regional authorities from Ecuadorian Ministry of Health, the Agencia de Regulaci&oacute;n y Control de la Bioseguridad y Cuarentena para Gal&aacute;pagos and Universidad de Las Am&eacute;ricas