31 research outputs found

    Inhibition of the Mitochondrial Enzyme ABAD Restores the Amyloid-β-Mediated Deregulation of Estradiol

    Get PDF
    Alzheimer's disease (AD) is a conformational disease that is characterized by amyloid-β (Aβ) deposition in the brain. Aβ exerts its toxicity in part by receptor-mediated interactions that cause down-stream protein misfolding and aggregation, as well as mitochondrial dysfunction. Recent reports indicate that Aβ may also interact directly with intracellular proteins such as the mitochondrial enzyme ABAD (Aβ binding alcohol dehydrogenase) in executing its toxic effects. Mitochondrial dysfunction occurs early in AD, and Aβ's toxicity is in part mediated by inhibition of ABAD as shown previously with an ABAD decoy peptide. Here, we employed AG18051, a novel small ABAD-specific compound inhibitor, to investigate the role of ABAD in Aβ toxicity. Using SH-SY5Y neuroblastoma cells, we found that AG18051 partially blocked the Aβ-ABAD interaction in a pull-down assay while it also prevented the Aβ42-induced down-regulation of ABAD activity, as measured by levels of estradiol, a known hormone and product of ABAD activity. Furthermore, AG18051 is protective against Aβ42 toxicity, as measured by LDH release and MTT absorbance. Specifically, AG18051 reduced Aβ42-induced impairment of mitochondrial respiration and oxidative stress as shown by reduced ROS (reactive oxygen species) levels. Guided by our previous finding of shared aspects of the toxicity of Aβ and human amylin (HA), with the latter forming aggregates in Type 2 diabetes mellitus (T2DM) pancreas, we determined whether AG18051 would also confer protection from HA toxicity. We found that the inhibitor conferred only partial protection from HA toxicity indicating distinct pathomechanisms of the two amyloidogenic agents. Taken together, our results present the inhibition of ABAD by compounds such as AG18051 as a promising therapeutic strategy for the prevention and treatment of AD, and suggest levels of estradiol as a suitable read-out

    Characterization of a 3 alpha-hydroxysteroid dehydrogenase/carbonyl reductase from the gram-negative bacterium Comamonas testosteroni.

    No full text
    A new form of the NAD(P)-dependent 3 alpha-hydroxysteroid dehydrogenases (3 alpha-HSDs), present in the gram-negative bacterium Comamonas testosteroni ATCC 11996, was isolated from a testosterone-induced bacterial extract and characterized. The enzyme (HSD 28) has a monomeric molecular mass of 28 kDa. It belongs to the protein superfamily of short-chain dehydrogenases/reductases (SDR) as established by N-terminal sequence analysis. Along with the 3 alpha-hydroxysteroid dehydrogenase and 3-oxo-reductase activities towards a variety of cis or trans fused A/B ring steroids, it also reduces several xenobiotic carbonyl compounds, including a metyrapone-based class of insecticides, to the respective alcohol metabolites. No dihydrodiol dehydrogenase activity towards trans- or cis-benzene-dihydrodiols could be detected, thus distinguishing it from the indomethacine-sensitive, mammalian liver type 3 alpha-HSDs. Subcellular fractionation revealed that the enzyme is localized in the cytoplasm of the bacterial cell. Proteins similar to the 3 alpha-HSD were detected and characterized from Comamonas testosteroni strain ATCC 17454 and from a commercially available steroid-induced extract of a patent Pseudomonas strain. The N-terminal amino acid sequence of the 3 alpha-HSD from the latter strain (HSD 29) is highly similar (94% identity over 15 residues) to a previously determined primary structure of a Pseudomonas species 3 alpha-HSD. However, no similarities could be detected between HSD 28 and a recently determined 3 alpha-HSD sequence from the ATCC 11996 Comamonas strain. The specific crossreaction of antibodies directed against mammalian liver type I 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD I) with the isolated 3 alpha-HSDs suggests the existence of a functionally and structurally related subgroup within the SDR superfamily. The broad substrate specificities of the characterized 3 alpha-HSD enzymes lead to the conclusion that they might participate in the intestinal bioactivation or inactivation of hormones, bile acids and xenobiotics since Comamonas testosteroni and related species are found in the intestinal tract of vertebrates including man

    Forms and functions of human SDR enzymes.

    No full text
    Short-chain dehydrogenases/reductases (SDR) are defined by distinct, common sequence motifs but constitute a functionally heterogenous superfamily of enzymes. At present, well over 1600 members from all forms of life are annotated in databases. Using the defined sequence motifs as queries, 37 distinct human members of the SDR family can be retrieved. The functional assignments of these forms fall minimally into three main groups, enzymes involved in intermediary metabolism, enzymes participating in lipid hormone and mediator metabolism, and open reading frames (ORFs) of yet undeciphered function. This overview, prepared just before completion of the human genome project, gives the different human SDR forms and relates them to human diseases

    Selective inhibition of human type 1 11beta-hydroxysteroid dehydrogenase by synthetic steroids and xenobiotics.

    Get PDF
    Functional analyses were performed with microsomal human 11beta-hydroxysteroid dehydrogenase type 1 overexpressed in the yeast Pichia pastoris. Cell extracts or microsomes from transformed strains displayed dehydrogenase and reductase activities, which were up to 10 times higher than in human liver microsomes, while for whole cells cortisone reduction but no dehydrogenase activity was observed. The synthetic glucocorticoids prednisolone and prednisone were efficiently metabolized by subcellular fractions, whereas no activity was observed with dexamethasone, budesonide and deflazacort. Inhibitors found to be effective towards the recombinant 11beta-hydroxysteroid dehydrogenase include synthetic steroids and xenobiotic compounds, revealing selective inhibition of the reaction direction, useful for development of specific inhibitors

    Function, gene organization and protein structures of 11beta-hydroxysteroid dehydrogenase isoforms.

    No full text
    Enzymatic interconversion of active and inactive glucocorticoid hormone is important, and is carried out physiologically by 11beta-hydroxysteroid dehydrogenase (11beta-HSD) isoforms, explaining their role in cellular and toxicological processes. Two forms of the enzyme, 11beta-HSD-1 and 11beta-HSD-2, belonging to the protein superfamily of short-chain dehydrogenases/reductases, have been structurally and functionally characterised. Although displaying dehydrogenase and reductase activities in vitro, the dominant in vivo function of the type-1 enzyme might be to work as a reductase, thus generating active cortisol from inactive cortisone precursors. On the other hand, for adrenal glucocorticoids the type-2 enzyme seems to be exclusively a dehydrogenase and, by inactivating glucocorticoids, confers specificity to peripheral mineralocorticoid receptors

    Cloning and primary structure of murine 11 beta-hydroxysteroid dehydrogenase/microsomal carbonyl reductase.

    No full text
    Screening of a mouse liver lambda gt 11 cDNA library with a rat liver 11 beta-hydroxysteroid dehydrogenase cDNA (11 beta-HSDr1A) and subsequent screening with an isolated mouse probe, resulted in the isolation and structure determination of a mouse cDNA encoding an amino acid sequence which is very similar to human and rat 11 beta-hydroxysteroid dehydrogenases (78% and 86% similar, respectively), and also to other known vertebrate 11 beta-hydroxysteroid dehydrogenase structures. Open-reading-frame analysis and the deduced amino acid sequence predict a protein with a molecular mass of 32.3 kDa which belongs to the superfamily of the short-chain dehydrogenase proteins. The amino acid sequence contains two potential glycosylation sites. These data are in agreement with information on the glycoprotein character of the native enzyme. This kind of post-translational modification seems to be a determining factor concerning the equilibrium of the catalyzed 11 beta-dehydrogenation/11-oxo reduction step [Obeid, J., Curnow, K. M., Aisenberg, J. and White, P.C. (1993) Mol. Endocrinol. 7, 154-160; Agarwal, A.K., Tusie-Luna, M.T., Monder, C. and White, P.C. (1990) Mol. Endocrinol. 4, 1827-1832]. After in vitro transcription/translation of the mouse cDNA, immunoprecipitation with anti-(microsomal carbonyl reductase) serum and N-terminal sequence analysis of the purified protein confirms the identity of microsomal 11 beta-hydroxysteroid dehydrogenase with the previously described, microsomal-bound xenobiotic carbonyl reductase [Maser, E. and Bannenberg, G. (1994) Biochem. Pharmacol. 47, 1805-1812], and points to an involvement of the 11 beta-HSD1A isoform in the reductive phase-I metabolism of xenobiotic compounds, besides its endocrinological functions. The alignment and comparison to other hydroxysteroid dehydrogenase forms of the same protein superfamily allows the identification of important residues in the 11 beta-HSD primary structure

    Lack of quinone reductase activity suggests that amyloid-beta peptide/ERAB induced lipid peroxidation is not directly related to production of reactive oxygen species by redoxcycling.

    No full text
    Mitochondrial type II hydroxyacyl-CoA dehydrogenase (ERAB) has recently been shown to mediate amyloid-beta peptide (Abeta) induced apoptosis and neurodegeneration. The precise mechanism of cell death induction is unknown, however, Abeta inhibits ERAB activities and as a result of ERAB-Abeta interactions, enhanced formation of lipid peroxidation products occur. The possibility that ERAB mediates quinone reduction is therefore investigated, thus giving the potential of redoxcycling and production of reactive oxygen species, leading to lipid peroxidation. Recombinant human ERAB was produced in a bacterial expression system and enzymological properties were evaluated. Using several orthoquinones as substrates, no ERAB mediated quinone reductase activity was found either in the presence or absence of Abeta, suggesting that the observed in vivo lipid peroxidation is a result of other mechanisms than redoxcycling by quinones

    Human type 10 17 beta-hydroxysteroid dehydrogenase: molecular modelling and substrate docking.

    No full text
    17 beta-hydroxysteroid dehydrogenases catalyze the oxidoreduction of hydroxy/oxo groups at position C17 of steroid hormones, thereby constituting a prereceptor control mechanism of hormone action. At present, 11 different mammalian 17 beta-hydroxysteroid dehydrogenases have been identified, catalyzing the cell- and steroid-specific activation and inactivation of estrogens and androgens. The human type 10 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD-10) is a multifunctional mitochondrial enzyme that efficiently catalyzes the oxidative inactivation at C17 of androgens and estrogens. However, it also mediates oxidation of 3 alpha-hydroxy groups of androgens, thereby reactivating androgen metabolites. Finally, it is involved in beta-oxidation of fatty acids by catalyzing the L-hydroxyacyl CoA dehydrogenase reaction of the beta-oxidation cycle. These features and expression profiles suggest a critical role of 17 beta-HSD-10 in neurodegenerative and steroid-dependent cancer forms. Since no three-dimensional structure of 17 beta-HSD-10 is available, homology modelling was carried out to understand the molecular basis of these substrate specificities. The structure obtained displays the properties of a one-domain, alpha/beta fold enzyme of the SDR family. The active site is located within a large, hydrophobic cleft, which forms optimal contacts with the different steroid surfaces. The data provide explanations for the substrate specificities toward the various classes of sex steroid hormones. The model is suitable to explore substrate and inhibitor characteristics that may be used in the development of novel strategies in the treatment of degenerative or malignant diseases

    Heterogeneity of 11beta-hydroxysteroid dehydrogenase type 1/microsomal carbonyl reductase (11beta-HSD/CR) in guinea pig tissues. Purification of the liver form suggests modification in the cosubstrate binding site.

    No full text
    11beta-hydroxysteroid dehydrogenase (11beta-HSD) and xenobiotic carbonyl reductase activities were determined in guinea pig tissue microsomes. The data indicate the presence of a NADP(H) dependent form, distinct from the known type I isozyme. Purification of 11beta-HSD-1 from liver microsomes resulted in two distinct peaks, resolved by dye-ligand chromatography, indicating differences in the cosubstrate binding site. Immunoblot analysis using anti 11beta-HSD-1 antibodies reveals the presence of similar structural determinants between the enzyme forms. Both have an apparent molecular mass of 32 kDa, suggesting protein modifications occurring in the type 1 isozyme which account for the differences in chromatographic behaviour
    corecore