2 research outputs found

    Hot Spots and Transition from d-Wave to Another Pairing Symmetry in the Electron-Doped Cuprate Superconductors

    Full text link
    We present a simple theoretical explanation for a transition from d-wave to another superconducting pairing observed in the electron-doped cuprates. The d_{x^2-y^2} pairing potential Delta, which has the maximal magnitude and opposite signs at the hot spots on the Fermi surface, becomes suppressed with the increase of electron doping, because the hot spots approach the Brillouin zone diagonals, where Delta vanishes. Then, the d_{x^2-y^2} pairing is replaced by either singlet s-wave or triplet p-wave pairing. We argue in favor of the latter and discuss experiments to uncover it.Comment: 6 pages, 4 figures, RevTeX 4. V.2: Extra figure and many references added. V.3: Minor update of references for the proof

    Small Angle Neutron Scattering (SANS and V-SANS)study of asphaltene aggregates in crude oil: Temperature effect and geometric shape analysis

    No full text
    We report small angle neutron scattering (SANS) experiments on two crude oils. Analysis of the high-Q SANS region has probed the asphaltene aggregates in the nanometer length scale. We find that the radius of gyration decreases with increasing temperature. We show that SANS measurements on crude oils give similar aggregate sizes to those found from SANS measurements of asphaltenes redispersed in deuterated toluene. The combined use of SANS and V-SANS on crude oil samples has allowed the determination of the radius of gyration of large scale asphaltene aggregates of approximately 0.45 microm. This has been achieved by the fitting of Beaucage functions over two size regimes. Analysis of the fitted Beaucage functions at very low-Q has shown that the large scale aggregates are not simply made by aggregation of all the smaller nanoaggregates. Instead, they are two different aggregates coexisting
    corecore