1,215 research outputs found
Chemical and photochemical oxygenation of a phytochrome Pr chromophore model pigment to purpurins
Chemical Bonding and Charge Distribution at Metallic Nanocontacts
We present results of electronic structure calculations for aluminium
contacts of atomic size, based on density functional theory and the local
density approximation. Addressing the atomic orbitals at the neck of the
nanocontact, we find that the local band structure deviates strongly from bulk
fcc aluminium. In particular, hybridization between Al 3s and 3p states is
fully suppressed due to directed bonds at the contact. Moreover, a charge
transfer of 0.6 electrons off the contact aluminium site is found. Both the
suppressed hybridization and the violated charge neutrality are characteristic
features of metallic nanocontacts. This fact has serious consequences for
models aiming at a microscopic description of transport properties.Comment: 6 pages, 3 figures, accepted by Chemical Physics Letter
Interactive Image Guided Surgical Navigation - A First Step Towards Minimally Invasive Orthopaedic Surgery
Spectral diffusion and 14N quadrupole splittings in absorption detected magnetic resonance hole burning spectra of photosynthetic reaction centers
Zero field absorption detected magnetic resonance hole burning measurements were performed on photosynthetic reaction centers of the bacteria Rhodobacter sphaeroides R26 and Rhodopseudomonas viridis. Extrapolation to zero microwave power yielded pseudohomogeneous linewidths of 2.0 MHz for Rhodopseudomonas viridis, 1.0 and 0.9 MHz for the protonated forms of Rhodobacter sphaeroides R26 with and without monomer bacteriochlorophyll exchanged, and 0.25 MHz as an upper limit for fully deuterated reaction centers of Rhodobacter sphaeroides R26. The measured linewidths were interpreted as being due to unresolved hyperfine interaction between the nuclear spins and the triplet electron spin, the line shape being determined by spectral diffusion among the nuclei. The difference in linewidths between Rhodobacter sphaeroides R26 and Rhodopseudomonas viridis is then explained by triplet delocalization on the special pair in the former, and localization on one dimer half on the latter. In the fully deuterated sample, four quadrupole satellites were observed in the hole spectra arising from the eight 14N nitrogens in the special pair. The quadrupole parameters seem to be very similar for all nitrogens and were determined to =1.25±0.1 MHz and =0.9±0.1 MHz. The Journal of Chemical Physics is copyrighted by The American Institute of Physics
Geometry Effects at Atomic-Size Aluminium Contacts
We present electronic structure calculations for aluminium nanocontacts.
Addressing the neck of the contact, we compare characteristic geometries to
investigate the effects of the local aluminium coordination on the electronic
states. We find that the Al 3pz states are very sensitive against modifications
of the orbital overlap, which has serious consequences for the transport
properties. Stretching of the contact shifts states towards the Fermi energy,
leaving the system instable against ferromagnetic ordering. By spacial
restriction, hybridization is locally suppressed at nanocontacts and the charge
neutrality is violated. We discuss the influence of mechanical stress by means
of quantitative results for the charge transfer.Comment: 10 pages, 4 figures, accepted by Chem. Phys. Let
Fractal Conductance Fluctuations in Gold--Nanowires
A detailed analysis of magneto-conductance fluctuations of quasiballistic
gold-nanowires of various lengths is presented. We find that the variance
when analyzed for much
smaller than the correlation field varies according to with indicating that the graph of
vs. is fractal. We attribute this behavior to the existence of
long-lived states arising from chaotic trajectories trapped close to regular
classical orbits. We find that decreases with increasing length of the
wires.Comment: 5 pages, Revtex with epsf, 4 Postscript figures, final version
accepted as Phys. Rev. Let
Quantum Conductance in Semimetallic Bismuth Nanocontacts
Electronic transport properties of bismuth nanocontacts are analyzed by means
of a low temperature scanning tunneling microscope. The subquantum steps
observed in the conductance versus elongation curves give evidence of atomic
rearrangements in the contact. The underlying quantum nature of the conductance
reveals itself through peaks in the conductance histograms. The shape of the
conductance curves at 77 K is well described by a simple gliding mechanism for
the contact evolution during elongation. The strikingly different behaviour at
4 K suggests a charge carrier transition from light to heavy ones as the
contact cross section becomes sufficiently small.Comment: 5 pages including 4 figures. Accepted for publication in Phys. Rev.
Let
Subharmonic Shapiro steps and assisted tunneling in superconducting point contacts
We analyze the current in a superconducting point contact of arbitrary
transmission in the presence of a microwave radiation. The interplay between
the ac Josephson current and the microwave signal gives rise to Shapiro steps
at voltages V = (m/n) \hbar \omega_r/2e, where n,m are integer numbers and
\omega_r is the radiation frequency. The subharmonic steps (n different from 1)
are a consequence of the ocurrence of multiple Andreev reflections (MAR) and
provide an unambiguous signature of the peculiar ac Josephson effect at high
transmission. Moreover, the dc current exhibits a rich subgap structure due to
photon-assisted MARs.Comment: Revtex, 4 pages, 4 figure
Heat dissipation in atomic-scale junctions
Atomic and single-molecule junctions represent the ultimate limit to the
miniaturization of electrical circuits. They are also ideal platforms to test
quantum transport theories that are required to describe charge and energy
transfer in novel functional nanodevices. Recent work has successfully probed
electric and thermoelectric phenomena in atomic-scale junctions. However, heat
dissipation and transport in atomic-scale devices remain poorly characterized
due to experimental challenges. Here, using custom-fabricated scanning probes
with integrated nanoscale thermocouples, we show that heat dissipation in the
electrodes of molecular junctions, whose transmission characteristics are
strongly dependent on energy, is asymmetric, i.e. unequal and dependent on both
the bias polarity and the identity of majority charge carriers (electrons vs.
holes). In contrast, atomic junctions whose transmission characteristics show
weak energy dependence do not exhibit appreciable asymmetry. Our results
unambiguously relate the electronic transmission characteristics of
atomic-scale junctions to their heat dissipation properties establishing a
framework for understanding heat dissipation in a range of mesoscopic systems
where transport is elastic. We anticipate that the techniques established here
will enable the study of Peltier effects at the atomic scale, a field that has
been barely explored experimentally despite interesting theoretical
predictions. Furthermore, the experimental advances described here are also
expected to enable the study of heat transport in atomic and molecular
junctions, which is an important and challenging scientific and technological
goal that has remained elusive.Comment: supporting information available in the journal web site or upon
reques
- …
