108 research outputs found

    Celastrol targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent cytotoxicity in tumor cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Celastrol is an active ingredient of the traditional Chinese medicinal plant <it>Tripterygium Wilfordii</it>, which exhibits significant antitumor activity in different cancer models <it>in vitro </it>and <it>in vivo</it>; however, the lack of information on the target and mechanism of action of this compound have impeded its clinical application. In this study, we sought to determine the mode of action of celastrol by focusing on the processes that mediate its anticancer activity.</p> <p>Methods</p> <p>The downregulation of heat shock protein 90 (HSP90) client proteins, phosphorylation of c-Jun NH2-terminal kinase (JNK), and cleavage of PARP, caspase 9 and caspase 3 were detected by western blotting. The accumulation of reactive oxygen species (ROS) was analyzed by flow cytometry and fluorescence microscopy. Cell cycle progression, mitochondrial membrane potential (MMP) and apoptosis were determined by flow cytometry. Absorption spectroscopy was used to determine the activity of mitochondrial respiratory chain (MRC) complexes.</p> <p>Results</p> <p>Celastrol induced ROS accumulation, G2-M phase blockage, apoptosis and necrosis in H1299 and HepG2 cells in a dose-dependent manner. N-acetylcysteine (NAC), an antioxidative agent, inhibited celastrol-induced ROS accumulation and cytotoxicity. JNK phosphorylation induced by celastrol was suppressed by NAC and JNK inhibitor SP600125 (SP). Moreover, SP significantly inhibited celastrol-induced loss of MMP, cleavage of PARP, caspase 9 and caspase 3, mitochondrial translocation of Bad, cytoplasmic release of cytochrome c, and cell death. However, SP did not inhibit celastrol-induced ROS accumulation. Celastrol downregulated HSP90 client proteins but did not disrupt the interaction between HSP90 and cdc37. NAC completely inhibited celastrol-induced decrease of HSP90 client proteins, catalase and thioredoxin. The activity of MRC complex I was completely inhibited in H1299 cells treated with 6 μM celastrol in the absence and presence of NAC. Moreover, the inhibition of MRC complex I activity preceded ROS accumulation in H1299 cells after celastrol treatment.</p> <p>Conclusion</p> <p>We identified ROS as the key intermediate for celastrol-induced cytotoxicity. JNK was activated by celastrol-induced ROS accumulation and then initiated mitochondrial-mediated apoptosis. Celastrol induced the downregulation of HSP90 client proteins through ROS accumulation and facilitated ROS accumulation by inhibiting MRC complex I activity. These results identify a novel target for celastrol-induced anticancer activity and define its mode of action.</p

    Differential Impact of Tetratricopeptide Repeat Proteins on the Steroid Hormone Receptors

    Get PDF
    Tetratricopeptide repeat (TPR) motif containing co-chaperones of the chaperone Hsp90 are considered control modules that govern activity and specificity of this central folding platform. Steroid receptors are paradigm clients of Hsp90. The influence of some TPR proteins on selected receptors has been described, but a comprehensive analysis of the effects of TPR proteins on all steroid receptors has not been accomplished yet.We compared the influence of the TPR proteins FK506 binding proteins 51 and 52, protein phosphatase-5, C-terminus of Hsp70 interacting protein, cyclophillin 40, hepatitis-virus-B X-associated protein-2, and tetratricopeptide repeat protein-2 on all six steroid hormone receptors in a homogeneous mammalian cell system. To be able to assess each cofactor's effect on the transcriptional activity of on each steroid receptor we employed transient transfection in a reporter gene assay. In addition, we evaluated the interactions of the TPR proteins with the receptors and components of the Hsp90 chaperone heterocomplex by coimmunoprecipitation. In the functional assays, corticosteroid and progesterone receptors displayed the most sensitive and distinct reaction to the TPR proteins. Androgen receptor's activity was moderately impaired by most cofactors, whereas the Estrogen receptors' activity was impaired by most cofactors only to a minor degree. Second, interaction studies revealed that the strongly receptor-interacting co-chaperones were all among the inhibitory proteins. Intriguingly, the TPR-proteins also differentially co-precipitated the heterochaperone complex components Hsp90, Hsp70, and p23, pointing to differences in their modes of action.The results of this comprehensive study provide important insight into chaperoning of diverse client proteins via the combinatorial action of (co)-chaperones. The differential effects of the TPR proteins on steroid receptors bear on all physiological processes related to steroid hormone activity

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    REACTIONS IN RARE GAS MATRICES MATRIX AND SITE EFFECTS

    No full text

    Pro-oxidative synergic bactericidal effect of NO: kinetics and inhibition by nitroxides

    Full text link
    NO plays diverse roles in physiological and pathological processes, occasionally resulting in opposing effects, particularly in cells subjected to oxidative stress. NO mostly protects eukaryotes against oxidative injury, but was demonstrated to kill prokaryotes synergistically with H2O2. This could be a promising therapeutic avenue. However, recent conflicting findings were reported describing dramatic protective activity of NO. The previous studies of NO effects on prokaryotes applied a transient oxidative stress while arbitrarily checking the residual bacterial viability after 30 or 60min and ignoring the process kinetics. If NO-induced synergy and the oxidative stress are time-dependent, the elucidation of the cell killing kinetics is essential, particularly for survival curves exhibiting a &quot;shoulder&quot; sometimes reflecting sublethal damage as in the linear-quadratic survival models. We studied the kinetics of NO synergic effects on H2O2-induced killing of microbial pathogens. A synergic pro-oxidative activity toward gram-negative and gram-positive cells is demonstrated even at sub-&mu;M/min flux of NO. For certain strains, the synergic effect progressively increased with the duration of cell exposure, and the linear-quadratic survival model best fit the observed survival data. In contrast to the failure of SOD to affect the bactericidal process, nitroxide SOD mimics abrogated the pro-oxidative synergy of NO/H2O2. These cell-permeative antioxidants, which hardly react with diamagnetic species and react neither with NO nor with H2O2, can detoxify redox-active transition metals and catalytically remove intracellular superoxide and nitrogen-derived reactive species such as (&bull;)NO2 or peroxynitrite. The possible mechanism underlying the bactericidal NO synergy under oxidative stress and the potential therapeutic gain are discussed

    A matrix isolation study of the fluorescence of anthracene and anthracene-ammonia adducts in solid argon

    Get PDF
    The UV absorption and emission spectra of anthracene in an Ar matrix were measured. Three major spectroscopic systems were obsd., assignable to anthracene mols. occupying distinct sites. The origins of these systems were red shifted with respect to the isolated mol. by 535, 691 and 722 cm-1. At 17 K, all lines were well resolved, with about 8 cm-1 full width at half max. Addn. of a small amt. of NH3 leads to the observation of 3 new band systems, red shifted with respect to the previously mentioned ones. These observations are discussed in relation to recent studies of anthracene-Ar and anthracene-NH3 clusters in supersonic jets

    Spectroscopic and functional characterization of T state hemoglobin conformations encapsulated in silica gels

    No full text
    Oxygen binding curves of sol-gel-encapsulated deoxy human adult hemoglobin (HbA) have previously revealed two distinct noncooperative populations with oxygen binding affinities approximately 1000 and 100 times lower than that of the high-affinity R state. The two populations which have been termed the low-affinity (LA) and high-affinity (HA) T states can be selectively stabilized using two different encapsulation protocols for deoxy-HbA. The present study seeks to understand the factors giving rise to these different affinity states. Visible and UV resonance Raman spectroscopies are used to characterize the conformational properties of both the deoxy and deoxy-turned-carbonmonoxy (CO) derivatives of HbA derived from the two encapsulation protocols. The geminate and bimolecular recombination of CO to the photodissociated CO derivatives is used to characterize the functional properties of the slowly evolving encapsulated populations. The results show that the initial deoxy-HbA populations are conformationally indistinguishable with respect to encapsulation protocol. The addition of CO to sol-gel-encapsulated deoxy-HbA triggers a detectable progression of conformational and functional changes. Visible resonance Raman spectra of the CO photoproduct reveal a progression of changes of the iron-proximal histidine stretching frequencies: 215, 222, 227, and 230 cm(-1). The low and high values correspond to the initial deoxy T state and liganded R (R(2)) state species, respectively. The 222 and 227 cm(-1) species are generated using encapsulation protocols that give rise to what are termed the LA and HA T states, respectively. The UV resonance Raman spectra of these and related species indicate that the progression from deoxy T to LA to HA is associated with a progressive loosening of T state constraints within the hinge and switch regions of the alpha(1)beta(2) interface. The time scale for the progression is determined by a balance between the ligation-initiated evolution toward high-affinity conformations and factors such as allosteric effectors, gel matrix, and added glycerol that slow ligand-binding-induced relaxation. Thus, it appears that the encapsulation protocol-dependent rate of ligand-binding-induced relaxation determines the functional properties of the initially encapsulated deoxy-HbA population
    corecore