181 research outputs found

    Green Pathways for the Enzymatic Synthesis of Furan-Based Polyesters and Polyamides

    Get PDF
    The attention towards the utilization of sustainable feedstocks for polymer synthesis has grown exponentially in recent years. One of the spotlighted monomers derived from renewable resources is 2,5-furandicarboxylic acid (FDCA), one of the most promising bio-based monomers, due to its resemblance to petroleum-based terephthalic acid. Very interesting synthetic routes using this monomer have been reported in the last two decades. Combining the use of bio-based monomers and non-toxic chemicals via enzymatic polymerizations can lead to a robust and favorable approach towards a greener technology of bio-based polymer production. In this chapter, a brief introduction to FDCA-based monomers and enzymatic polymerizations is given, particularly focusing on furan-based polymers and their polymerization. In addition, an outline of the recent developments in the field of enzymatic polymerizations is discussed. </p

    Ionic liquids at electrified interfaces

    Get PDF
    Until recently, “room-temperature” (<100–150 °C) liquid-state electrochemistry was mostly electrochemistry of diluted electrolytes(1)–(4) where dissolved salt ions were surrounded by a considerable amount of solvent molecules. Highly concentrated liquid electrolytes were mostly considered in the narrow (albeit important) niche of high-temperature electrochemistry of molten inorganic salts(5-9) and in the even narrower niche of “first-generation” room temperature ionic liquids, RTILs (such as chloro-aluminates and alkylammonium nitrates).(10-14) The situation has changed dramatically in the 2000s after the discovery of new moisture- and temperature-stable RTILs.(15, 16) These days, the “later generation” RTILs attracted wide attention within the electrochemical community.(17-31) Indeed, RTILs, as a class of compounds, possess a unique combination of properties (high charge density, electrochemical stability, low/negligible volatility, tunable polarity, etc.) that make them very attractive substances from fundamental and application points of view.(32-38) Most importantly, they can mix with each other in “cocktails” of one’s choice to acquire the desired properties (e.g., wider temperature range of the liquid phase(39, 40)) and can serve as almost “universal” solvents.(37, 41, 42) It is worth noting here one of the advantages of RTILs as compared to their high-temperature molten salt (HTMS)(43) “sister-systems”.(44) In RTILs the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules

    Insulin-like growth factor-1 deficiency and metabolic syndrome

    Full text link

    Kinetik der Pyrolyse und der Verbrennung von Steinkohlen unter besonderer Beruecksichtigung des Sauerstoffpartialdruckes

    No full text
    SIGLEAvailable from TIB Hannover: DW 2350 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore