528 research outputs found
Efficient approximations of neutrino physics for three-dimensional simulations of stellar core collapse
Neutrino transport in spherically symmetric models of stellar core collapse
and bounce has achieved a technically complete level, rewarded by the agreement
among independent groups that a multi-dimensional treatment of the
fluid-instabilities in the post-bounce phase is indispensable to model
supernova explosions. While much effort is required to develop a reliable
neutrino transport technique in axisymmetry, we explore neutrino physics
approximations and parameterizations for an efficient three-dimensional
simulation of the fluid-instabilities in the shock-heated matter that
accumulates between the accretion shock and the protoneutron star. We
demonstrate the reliability of a simple parameterization scheme in the collapse
phase and extend our 3D magneto-hydrodynamical collapse simulations to a
preliminary postbounce evolution. The growth of magnetic fields is
investigated.Comment: 5 pages, 4 figures, in Proceedings of "Nuclei in the Cosmos IX,
Geneva, Jun 25-30", associated movies are displayed at
http://www.physik.unibas.ch/~liebend/displa
Precision measurement of cosmic magnification from 21 cm emitting galaxies
We show how precision lensing measurements can be obtained through the
lensing magnification effect in high redshift 21cm emission from galaxies.
Normally, cosmic magnification measurements have been seriously complicated by
galaxy clustering. With precise redshifts obtained from 21cm emission line
wavelength, one can correlate galaxies at different source planes, or exclude
close pairs to eliminate such contaminations.
We provide forecasts for future surveys, specifically the SKA and CLAR. SKA
can achieve percent precision on the dark matter power spectrum and the galaxy
dark matter cross correlation power spectrum, while CLAR can measure an
accurate cross correlation power spectrum. The neutral hydrogen fraction was
most likely significantly higher at high redshifts, which improves the number
of observed galaxies significantly, such that also CLAR can measure the dark
matter lensing power spectrum. SKA can also allow precise measurement of
lensing bispectrum.Comment: 11 pages, 8 figures. Accepted to MNRAS. We deleted two figures and
shortened the paper to meet MNRAS's requirement. All main results remain
unchange
Precision era of the kinetic Sunyaev-Zeldovich effect: simulations, analytical models and observations and the power to constrain reionization
The kinetic SZ effect, which is the dominant CMB source at arc-minute scales
and Ghz, probes the ionized gas peculiar momentum up to the
epoch of reionization and is a sensitive measure of the reionization history.
We ran high resolution self-similar and CDM hydro simulations and
built an analytical model to study this effect. Our model reproduces the
CDM simulation results to several percent accuracy, passes various
tests against self-similar simulations, and shows a wider range of
applicability than previous analytical models. Our model in its continuous
version is free of simulation limitations such as finite simulation box and
finite resolution and allows an accurate prediction of the kinetic SZ power
spectrum . For the WMAP cosmology, we find for the reionization redshift and
. The corresponding temperature fluctuation is several K at
these ranges. The dependence of on the reionization history allows an
accurate measurement of the reionization epoch. For the Atacama cosmology
telescope experiment, can be measured with accuracy.
scales as . Given cosmological parameters,
ACT would be able to constrain with several percent accuracy.
Some multi-reionization scenarios degenerate in the primary CMB temperature and
TE measurement can be distinguished with confidence.Comment: 14 pages, 7 figures. Accepted by MNRAS. We corrected the primary CMB
power spectrum we used. We added discussions about the effects of lensing and
relativistic SZ correctio. We withdraw a claim about the patchy reionizatio
Power Spectra in Global Defect Theories of Cosmic Structure Formation
An efficient technique for computing perturbation power spectra in field
ordering theories of cosmic structure formation is introduced, enabling
computations to be carried out with unprecedented precision. Large scale
simulations are used to measure unequal time correlators of the source stress
energy, taking advantage of scaling during matter and radiation domination, and
causality, to make optimal use of the available dynamic range. The correlators
are then re-expressed in terms of a sum of eigenvector products, a
representation which we argue is optimal, enabling the computation of the final
power spectra to be performed at high accuracy. Microwave anisotropy and matter
perturbation power spectra for global strings, monopoles, textures and
non-topological textures are presented and compared with recent observations.Comment: 4 pages, compressed and uuencoded RevTex file and postscript figure
Approaching the dynamics of hot nucleons in supernovae
All recent numerical simulations agree that stars in the main sequence mass
range of 9-40 solar masses do not produce a prompt hydrodynamic ejection of the
outer layers after core collapse and bounce. Rather they suggest that stellar
core collapse and supernova explosion are dynamically distinct astrophysical
events, separated by an unspectacular accretion phase of at least ~40 ms
duration. As long as the neutrinospheres remain convectively stable, the
explosion dynamics is determined by the neutrons, protons, electrons and
neutrinos in the layer of impact-heated matter piling up on the protoneutron
star. The crucial role of neutrino transport in this regime has been emphasized
in many previous investigations. Here, we search for efficient means to address
the role of magnetic fields and fluid instabilities in stellar core collapse
and the postbounce phase.Comment: 4 pages, contribution to Nuclei in the Cosmos VIII, Jul. 19-23,
submitted to Nucl. Phys.
FISH: A 3D parallel MHD code for astrophysical applications
FISH is a fast and simple ideal magneto-hydrodynamics code that scales to ~10
000 processes for a Cartesian computational domain of ~1000^3 cells. The
simplicity of FISH has been achieved by the rigorous application of the
operator splitting technique, while second order accuracy is maintained by the
symmetric ordering of the operators. Between directional sweeps, the
three-dimensional data is rotated in memory so that the sweep is always
performed in a cache-efficient way along the direction of contiguous memory.
Hence, the code only requires a one-dimensional description of the conservation
equations to be solved. This approach also enable an elegant novel
parallelisation of the code that is based on persistent communications with MPI
for cubic domain decomposition on machines with distributed memory. This scheme
is then combined with an additional OpenMP parallelisation of different sweeps
that can take advantage of clusters of shared memory. We document the detailed
implementation of a second order TVD advection scheme based on flux
reconstruction. The magnetic fields are evolved by a constrained transport
scheme. We show that the subtraction of a simple estimate of the hydrostatic
gradient from the total gradients can significantly reduce the dissipation of
the advection scheme in simulations of gravitationally bound hydrostatic
objects. Through its simplicity and efficiency, FISH is as well-suited for
hydrodynamics classes as for large-scale astrophysical simulations on
high-performance computer clusters. In preparation for the release of a public
version, we demonstrate the performance of FISH in a suite of astrophysically
orientated test cases.Comment: 27 pages, 11 figure
- …