8,742 research outputs found
A library of ab initio Raman spectra for automated identification of 2D materials
Raman spectroscopy is frequently used to identify composition, structure and
layer thickness of 2D materials. Here, we describe an efficient
first-principles workflow for calculating resonant first-order Raman spectra of
solids within third-order perturbation theory employing a localized atomic
orbital basis set. The method is used to obtain the Raman spectra of 733
different monolayers selected from the computational 2D materials database
(C2DB). We benchmark the computational scheme against available experimental
data for 15 known monolayers. Furthermore, we propose an automatic procedure
for identifying a material based on an input experimental Raman spectrum and
illustrate it for the cases of MoS (H-phase) and WTe
(T-phase). The Raman spectra of all materials at different excitation
frequencies and polarization configurations are freely available from the C2DB.
Our comprehensive and easily accessible library of \textit{ab initio} Raman
spectra should be valuable for both theoreticians and experimentalists in the
field of 2D materialsComment: 17 pages, 7 figure
Calibration of the Mass-Temperature Relation for Clusters of Galaxies Using Weak Gravitational Lensing
The main uncertainty in current determinations of the power spectrum
normalization, sigma_8, from abundances of X-ray luminous galaxy clusters
arises from the calibration of the mass-temperature relation. We use our weak
lensing mass determinations of 30 clusters from the hitherto largest sample of
clusters with lensing masses, combined with X-ray temperature data from the
literature, to calibrate the normalization of this relation at a temperature of
8 keV, M_{500c,8 keV}=(8.7 +/- 1.6) h^{-1} 10^{14} M_sun. This normalization is
consistent with previous lensing-based results based on smaller cluster
samples, and with some predictions from numerical simulations, but higher than
most normalizations based on X-ray derived cluster masses. Assuming the
theoretically expected slope alpha=3/2 of the mass-temperature relation, we
derive sigma_8 = 0.88 +/-0.09 for a spatially-flat LambdaCDM universe with
Omega_m = 0.3. The main systematic errors on the lensing masses result from
extrapolating the cluster masses beyond the field-of-view used for the
gravitational lensing measurements, and from the separation of
cluster/background galaxies, contributing each with a scatter of 20%. Taking
this into account, there is still significant intrinsic scatter in the
mass-temperature relation indicating that this relation may not be very tight,
at least at the high mass end. Furthermore, we find that dynamically relaxed
clusters are 75 +/-40% hotter than non-relaxed clusters.Comment: 8 pages, 4 figures, revised version submitted to Ap
Swift Identification of Dark Gamma-Ray Bursts
We present an optical flux vs. X-ray flux diagram for all known gamma-ray
bursts (GRBs) for which an X-ray afterglow has been detected. We propose an
operational definition of dark bursts as those bursts that are optically
subluminous with respect to the fireball model, i.e., which have an
optical-to-X-ray spectral index beta_OX < 0.5. Out of a sample of 52 GRBs we
identify 5 dark bursts. The definition and diagram serve as a simple and quick
diagnostic tool for identifying dark GRBs based on limited information,
particularly useful for early and objective identification of dark GRBs
observed with the Swift satellite.Comment: 4 pages, 1 figure. ApJ Letters, in pres
ISO far-infrared observations of rich galaxy clusters II. Sersic 159-03
The far-infrared emission from rich galaxy clusters is investigated. Maps
have been obtained by ISO at 60, 100, 135, and 200 microns using the PHT-C
camera. Ground based imaging and spectroscopy were also acquired. Here we
present the results for the cooling flow cluster Sersic 159-03. An infrared
source coincident with the dominant cD galaxy is found. Some off-center sources
are also present, but without any obvious counterparts.Comment: 6 pages, 4 postscript figures, accepted for publication in `Astronomy
and Astrophysics
EEG source imaging assists decoding in a face recognition task
EEG based brain state decoding has numerous applications. State of the art
decoding is based on processing of the multivariate sensor space signal,
however evidence is mounting that EEG source reconstruction can assist
decoding. EEG source imaging leads to high-dimensional representations and
rather strong a priori information must be invoked. Recent work by Edelman et
al. (2016) has demonstrated that introduction of a spatially focal source space
representation can improve decoding of motor imagery. In this work we explore
the generality of Edelman et al. hypothesis by considering decoding of face
recognition. This task concerns the differentiation of brain responses to
images of faces and scrambled faces and poses a rather difficult decoding
problem at the single trial level. We implement the pipeline using spatially
focused features and show that this approach is challenged and source imaging
does not lead to an improved decoding. We design a distributed pipeline in
which the classifier has access to brain wide features which in turn does lead
to a 15% reduction in the error rate using source space features. Hence, our
work presents supporting evidence for the hypothesis that source imaging
improves decoding
Volume-energy correlations in the slow degrees of freedom of computer-simulated phospholipid membranes
Constant-pressure molecular-dynamics simulations of phospholipid membranes in
the fluid phase reveal strong correlations between equilibrium fluctuations of
volume and energy on the nanosecond time-scale. The existence of strong
volume-energy correlations was previously deduced indirectly by Heimburg from
experiments focusing on the phase transition between the fluid and the ordered
gel phases. The correlations, which are reported here for three different
membranes (DMPC, DMPS-Na, and DMPSH), have volume-energy correlation
coefficients ranging from 0.81 to 0.89. The DMPC membrane was studied at two
temperatures showing that the correlation coefficient increases as the phase
transition is approached
Coherent Transport through an interacting double quantum dot: Beyond sequential tunneling
Various causes for negative differential conductance in transport through an
interacting double quantum dot are investigated. Particular focus is given to
the interplay between the renormalization of the energy levels due to the
coupling to the leads and the decoherence of the states. The calculations are
performed within a basis of many-particle eigenstates and we consider the
dynamics given by the von Neumann-equation taking into account also processes
beyond sequential tunneling. A systematic comparison between the levels of
approximation and also with different formalisms is performed. It is found that
the current is qualitatively well described by sequential processes as long as
the temperature is larger than the level broadening induced by the contacts.Comment: 11 pages, 5 figures included in tex
- …