45 research outputs found

    J Fluorescence

    Get PDF
    The scope of this paper is to illustrate the need for an improved quality assurance in fluorometry. For this purpose, instrumental sources of error and their influences on the reliability and comparability of fluorescence data are highlighted for frequently used photoluminescence techniques ranging from conventional macro- and microfluorometry over fluorescence microscopy and flow cytometry to microarray technology as well as in vivo fluorescence imaging. Particularly, the need for and requirements on fluorescence standards for the characterization and performance validation of fluorescence instruments, to enhance the comparability of fluorescence data, and to enable quantitative fluorescence analysis are discussed. Special emphasis is dedicated to spectral fluorescence standards and fluorescence intensity standards

    No association between CTNNBL1 and episodic memory performance

    No full text
    Polymorphisms in the gene encoding catenin-β-like 1 (CTNNBL1) were recently reported to be associated with verbal episodic memory performance—in particular, delayed verbal free recall assessed between 5 and 30 min after encoding—in a genome-wide association study on healthy young adults. To further examine the genetic effects of CTNNBL1, we tested for association between 455 single-nucleotide polymorphisms (SNPs) in or near CTNNBL1 and 14 measures of episodic memory performance from three different tasks in 1743 individuals. Probands were part of a population-based study of mentally healthy adult men and women, who were between 20 and 70 years old and were recruited as participants for the Berlin Aging Study II. Associations were assessed using linear regression analysis. Despite having sufficient power to detect the previously reported effect sizes, we found no evidence for statistically significant associations between the tested CTNNBL1 SNPs and any of the 14 measures of episodic memory. The previously reported effects of genetic polymorphisms in CTNNBL1 on episodic memory performance do not generalize to the broad range of tasks assessed in our cohort. If not altogether spurious, the effects may be limited to a very narrow phenotypic domain (that is, verbal delayed free recall between 5 and 30 min). More studies are needed to further clarify the role of CTNNBL1 in human memory

    Phylogenetic Dependency Networks: Inferring Patterns of CTL Escape and Codon Covariation in HIV-1 Gag

    Get PDF
    HIV avoids elimination by cytotoxic T-lymphocytes (CTLs) through the evolution of escape mutations. Although there is mounting evidence that these escape pathways are broadly consistent among individuals with similar human leukocyte antigen (HLA) class I alleles, previous population-based studies have been limited by the inability to simultaneously account for HIV codon covariation, linkage disequilibrium among HLA alleles, and the confounding effects of HIV phylogeny when attempting to identify HLA-associated viral evolution. We have developed a statistical model of evolution, called a phylogenetic dependency network, that accounts for these three sources of confounding and identifies the primary sources of selection pressure acting on each HIV codon. Using synthetic data, we demonstrate the utility of this approach for identifying sites of HLA-mediated selection pressure and codon evolution as well as the deleterious effects of failing to account for all three sources of confounding. We then apply our approach to a large, clinically-derived dataset of Gag p17 and p24 sequences from a multicenter cohort of 1144 HIV-infected individuals from British Columbia, Canada (predominantly HIV-1 clade B) and Durban, South Africa (predominantly HIV-1 clade C). The resulting phylogenetic dependency network is dense, containing 149 associations between HLA alleles and HIV codons and 1386 associations among HIV codons. These associations include the complete reconstruction of several recently defined escape and compensatory mutation pathways and agree with emerging data on patterns of epitope targeting. The phylogenetic dependency network adds to the growing body of literature suggesting that sites of escape, order of escape, and compensatory mutations are largely consistent even across different clades, although we also identify several differences between clades. As recent case studies have demonstrated, understanding both the complexity and the consistency of immune escape has important implications for CTL-based vaccine design. Phylogenetic dependency networks represent a major step toward systematically expanding our understanding of CTL escape to diverse populations and whole viral genes

    Spotting the enemy within: Targeted silencing of foreign DNA in mammalian genomes by the Krüppel-associated box zinc finger protein family

    Get PDF

    Blocking TLR2 in vivo protects against accumulation of inflammatory cells and neuronal injury in experimental stroke.

    No full text
    Reduced infarct volume in TLR2-knockout mice compared with C57Bl/6 wild-type mice has recently been shown in experimental stroke and confirmed in this study. We now also show a significant decrease of CD11b-positive cell counts and decreased neuronal death in the ischemic hemispheres of TLR2-deficient mice compared with C57Bl/6wt mice 2 days after transient focal cerebral ischemia. To examine the potential benefit of intravascular TLR2 inhibition, C57Bl/6wt mice were treated intraarterially with TLR2-blocking anti-TLR2 antibody (clone T2.5) after 45 minutes of cerebral ischemia and compared with control antibody (isotype) treated wild-type mice. Whereas T2.5-treated mice had no reduction in infarct volumes at 48 hours after reperfusion, they did have decreased numbers of CD11b-positive inflammatory cells and decreased neuronal death compared with isotype-treated control mice. Comparison of the isotype antibody treatment to control (saline) treatment showed no effects on infarct volumes or neuronal survival. However, mice treated with the control isotype antibody had increased numbers of CD11b-positive inflammatory cells compared with saline-treated animals. Thus, antibody treatment itself (i.e., control isotype antibody, but potentially of any antibody) may have adverse effects and limit therapeutic benefit of anti-TLR2-antibody therapy. We conclude that TLR2 mediates leukocyte and microglial infiltration and neuronal death, which can be attenuated by TLR2 inhibition. The TLR2 inhibition in vivo improves neuronal survival and may represent a future stroke therapy.Journal of Cerebral Blood Flow & Metabolism advance online publication, 15 September 2010; doi:10.1038/jcbfm.2010.161

    Dopamine modulates attentional control of auditory perception: DARPP-32 (PPP1R1B) genotype effects on behavior and cortical evoked potentials

    No full text
    Using a specific variant of the dichotic listening paradigm, we studied the influence of dopamine on attentional modulation of auditory perception by assessing effects of allelic variation of a single-nucleotide polymorphism (SNP) rs907094 in the DARPP-32 gene (dopamine and adenosine 3', 5'-monophosphate-regulated phosphoprotein 32 kilodations; also known as PPP1R1B) on behavior and cortical evoked potentials. A frequent DARPP-32 haplotype that includes the A allele of this SNP is associated with higher mRNA expression of DARPP-32 protein isoforms, striatal dopamine receptor function, and frontal striatal connectivity. As we hypothesized, behaviorally the A homozygotes were more flexible in selectively attending to auditory inputs than any G carriers. Moreover, this genotype also affected auditory evoked cortical potentials that reflect early sensory and late attentional processes. Specifically, analyses of event-related potentials (ERPs) revealed that amplitudes of an early component of sensory selection (N1) and a late component (N450) reflecting attentional deployment for conflict resolution were larger in A homozygotes than in any G carriers. Taken together, our data lend support for dopamine's role in modulating auditory attention both during the early sensory selection and late conflict resolution stages. (C) 2013 Elsevier Ltd. All rights reserved

    BBA

    Get PDF
    Several reports have recently demonstrated a detrimental role of Toll-like receptors (TLR) in cerebral ischemia, while there is little information about the endogenous ligands which activate TLR-signaling. The myeloid related proteins-8 and-14 (Mrp8/S100A8; Mrp14/S100A9) have recently been characterized as endogenous TLR4-agonists, and thus may mediate TLR-activation in cerebral ischemia. Interestingly, not only TLR-mRNAs, but also Mrp8 and Mrp14 mRNA were found to be induced in mouse brain between 3 and 48 h after transient 1 h focal cerebral ischemia/reperfusion. Mrp-protein was expressed in the ischemic hemisphere, and co-labeled with CD11b-positive cells. To test the hypothesis that Mrp-signaling contributes to the postischemic brain damage, we subjected Mrp14-deficient mice, which also lack Mrp8 protein expression, to focal cerebral ischemia. Mrp14-deficient mice had significantly smaller lesion volumes when compared to wild-type littermates (130 ± 16 mm3 vs. 105 ± 28 mm3) at 2 days after transient focal cerebral ischemia (1 h), less brain swelling, and a reduced macrophage/microglia cell count in the ischemic hemisphere. We conclude that upregulation and signaling of Mrp-8 and-14 contribute to neuroinflammation and the progression of ischemic damage
    corecore