47 research outputs found

    Actionable loss of SLF2 drives B-cell lymphomagenesis and impairs the DNA damage response

    Get PDF
    The DNA damage response (DDR) acts as a barrier to malignant transformation and is often impaired during tumorigenesis. Exploiting the impaired DDR can be a promising therapeutic strategy; however, the mechanisms of inactivation and corresponding biomarkers are incompletely understood. Starting from an unbiased screening approach, we identified the SMC5-SMC6 Complex Localization Factor 2 (SLF2) as a regulator of the DDR and biomarker for a B-cell lymphoma (BCL) patient subgroup with an adverse prognosis. SLF2-deficiency leads to loss of DDR factors including Claspin (CLSPN) and consequently impairs CHK1 activation. In line with this mechanism, genetic deletion of Slf2 drives lymphomagenesis in vivo. Tumor cells lacking SLF2 are characterized by a high level of DNA damage, which leads to alterations of the post-translational SUMOylation pathway as a safeguard. The resulting co-dependency confers synthetic lethality to a clinically applicable SUMOylation inhibitor (SUMOi), and inhibitors of the DDR pathway act highly synergistic with SUMOi. Together, our results identify SLF2 as a DDR regulator and reveal co-targeting of the DDR and SUMOylation as a promising strategy for treating aggressive lymphoma

    The OTUD6B-LIN28B-MYC axis determines the proliferative state in multiple myeloma

    Get PDF
    Deubiquitylases (DUBs) are therapeutically amenable components of the ubiquitin machinery that stabilize substrate proteins. Their inhibition can destabilize oncoproteins that may otherwise be undruggable. Here, we screened for DUB vulnerabilities in multiple myeloma, an incurable malignancy with dependency on the ubiquitin proteasome system and identified OTUD6B as an oncogene that drives the G1/S-transition. LIN28B, a suppressor of microRNA biogenesis, is specified as a bona fide cell cycle-specific substrate of OTUD6B. Stabilization of LIN28B drives MYC expression at G1/S, which in turn allows for rapid S-phase entry. Silencing OTUD6B or LIN28B inhibits multiple myeloma outgrowth in vivo and high OTUD6B expression evolves in patients that progress to symptomatic multiple myeloma and results in an adverse outcome of the disease. Thus, we link proteolytic ubiquitylation with post-transcriptional regulation and nominate OTUD6B as a potential mediator of the MGUS-multiple myeloma transition, a central regulator of MYC, and an actionable vulnerability in multiple myeloma and other tumors with an activated OTUD6B-LIN28B axis

    Role of T198 Modification in the Regulation of p27Kip1 Protein Stability and Function

    Get PDF
    The tumor suppressor gene p27Kip1 plays a fundamental role in human cancer progression. Its expression and/or functions are altered in almost all the different tumor histotype analyzed so far. Recently, it has been demonstrated that the tumor suppression function of p27 resides not only in the ability to inhibit Cyclins/CDKs complexes through its N-terminal domain but also in the capacity to modulate cell motility through its C-terminal portion. Particular interest has been raised by the last amino-acid, (Threonine 198) in the regulation of both protein stability and cell motility

    Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy

    Full text link

    The organometallic ferrocene exhibits amplified anti-tumor activity by targeted delivery via highly selective ligands to αvβ3, αvβ6, or α5β1 integrins

    No full text
    High levels of reactive oxygen species (ROS) in tumors have been shown to exert anti-tumor activity, leading to the concept of ROS induction as therapeutic strategy. The organometallic compound ferrocene (Fc) generates ROS through a reversible one-electron oxidation. Incorporation of Fc into a tumor-targeting, bioactive molecule can enhance its therapeutic activity and enable tumor specific delivery. Therefore, we conjugated Fc to five synthetic, Arg-Gly-Asp (RGD)-based integrin binding ligands to enable targeting of the cell adhesion and signaling receptor integrin subtypes αvβ3, α5β1, or αvβ6, which are overexpressed in various, distinct tumors. We designed and synthesized a library of integrin-ligand-ferrocene (ILF) derivatives and showed that ILF conjugates maintained the high integrin affinity and selectivity of their parent ligands. A thorough biological characterization allowed us to identify the two most promising ligands, an αvβ3 (L2b) and an αvβ6 (L3b) targeting ILF, which displayed selective integrin-dependent cell uptake and pronounced ferrocene-mediated anti-tumor effects in vitro, along with increased ROS production and DNA damage. Hence, ILFs are promising candidates for the selective, tumor-targeted delivery of ferrocene to maximize its anti-cancer efficacy and minimize systemic toxicity, thereby improving the therapeutic window of ferrocene compared to currently used non-selective anti-cancer drugs

    Testing the importance of p27 degradation by the SCF(skp2) pathway in murine models of lung and colon cancer

    Get PDF
    Decreased expression of the CDK inhibitor p27(kip1) in human tumors directly correlates with increased resistance to chemotherapies, increased rates of metastasis, and an overall increased rate of patient mortality. It is thought that decreased p27 expression in tumors is caused by increased proteasomal turnover, in particular activation of the pathway governed by the SCF(skp2) E3 ubiquitin protein ligase. We have directly tested the importance of the SCF(skp)-mediated degradation of p27 in tumorigenesis by analyzing the tumor susceptibility of mice that express a form of p27 that cannot be ubiquitinated and degraded by this pathway (p27T187A). In mouse models of both lung and colon cancer down-regulation of p27 promotes tumorigenesis. However, we found that preventing p27 degradation by the SCF(skp2) pathway had no impact on tumor incidence or overall survival in either tumor model. Our study unveiled a previously unrecognized role for the control of p27 mRNA abundance in the development of non-small cell lung cancers. In the colon cancer model, the frequency of intestinal adenomas was similarly unaffected by the p27T187A mutation, but, unexpectedly, we found that it inhibited progression of intestinal adenomas to carcinomas. These studies may guide the choice of clinical settings in which pharmacologic inhibitors of the Skp2 pathway might be of therapeutic value

    Inducing differentiation of premalignant hepatic cells as a novel therapeutic strategy in hepatocarcinoma.

    No full text
    Hepatocellular carcinoma (HCC) represents the second leading cause of cancer-related deaths and is reported to be resistant to chemotherapy caused by tumor-initiating cells. These tumor-initiating cells express stem cell markers. An accumulation of tumor-initiating cells be found in 28-50% of all HCC and is correlated with a poor prognosis. Mechanisms that mediate chemoresistance include drug export, increased metabolism and quiescence. Importantly, the mechanisms that regulate quiescence in tumor-initiating cells have not been analyzed in detail so far. In the present research we have developed a single cell tracking method to follow up the fate of tumor-initiating cells during chemotherapy. Thereby, we were able to demonstrate that mCXCL1 exerts cellular state specific effects regulating the resistance to chemotherapeutics. mCXCL1 is the mouse homolog of the human Interleukin 8, a chemokine which correlates with poor prognosis in HCC patients. We found that mCXCL1 blocks differentiationof premalignant cells and activates quiescence in tumor-initiating cells. This process depends on the activation of the mTORC1 kinase. Blocking of the mTORC1 kinase induces differentiation of tumor-initiating cells and allows their subsequent depletion using the chemotherapeutic drug doxorubicin. Our work deciphers the mCXCL1-mTORC1 pathway as crucial in liver cancer stem cell maintenance and highlights it as a novel target in combination with conventional chemotherapy

    C-terminal phosphorylation controls the stability and function of p27kip1

    No full text
    Entry of cells into the cell division cycle requires the coordinated activation of cyclin-dependent kinases (cdks) and the deactivation of cyclin kinase inhibitors. Degradation of p27kip1 is known to be a central component of this process as it allows controlled activation of cdk2-associated kinase activity. Turnover of p27 at the G1/S transition is regulated through phosphorylation at T187 and subsequent SCF(skp2)-dependent ubiquitylation. However, detailed analysis of this process revealed the existence of additional pathways that regulate the abundance of the protein in early G1 and as cells exit quiescence. Here, we report on a molecular mechanism that regulates p27 stability by phosphorylation at T198. Phosphorylation of p27 at T198 prevents ubiquitin-dependent degradation of free p27. T198 phosphorylation also controls progression through the G1 phase of the cell cycle by regulating the association of p27 with cyclin–cdk complexes. Our results unveil the molecular composition of a pathway, which regulates the abundance and activity of p27kip1 during early G1. They also explain how the T187- and the T198-dependent turnover systems synergize to allow cell cycle progression in G1
    corecore