19,752 research outputs found

    Dissipation Layers in Rayleigh-B\'{e}nard Convection: A Unifying View

    Full text link
    Boundary layers play an important role in controlling convective heat transfer. Their nature varies considerably between different application areas characterized by different boundary conditions, which hampers a uniform treatment. Here, we argue that, independent from boundary conditions, systematic dissipation measurements in Rayleigh-B\'enard convection capture the relevant near-wall structures. By means of direct numerical simulations with varying Prandtl numbers, we demonstrate that such dissipation layers share central characteristics with classical boundary layers, but, in contrast to the latter, can be extended naturally to arbitrary boundary conditions. We validate our approach by explaining differences in scaling behavior observed for no-slip and stress-free boundaries, thus paving the way to an extension of scaling theories developed for laboratory convection to a broad class of natural systems

    EEG source imaging assists decoding in a face recognition task

    Full text link
    EEG based brain state decoding has numerous applications. State of the art decoding is based on processing of the multivariate sensor space signal, however evidence is mounting that EEG source reconstruction can assist decoding. EEG source imaging leads to high-dimensional representations and rather strong a priori information must be invoked. Recent work by Edelman et al. (2016) has demonstrated that introduction of a spatially focal source space representation can improve decoding of motor imagery. In this work we explore the generality of Edelman et al. hypothesis by considering decoding of face recognition. This task concerns the differentiation of brain responses to images of faces and scrambled faces and poses a rather difficult decoding problem at the single trial level. We implement the pipeline using spatially focused features and show that this approach is challenged and source imaging does not lead to an improved decoding. We design a distributed pipeline in which the classifier has access to brain wide features which in turn does lead to a 15% reduction in the error rate using source space features. Hence, our work presents supporting evidence for the hypothesis that source imaging improves decoding

    Dynamic glass transition: bridging the gap between mode-coupling theory and the replica approach

    Full text link
    We clarify the relation between the ergodicity breaking transition predicted by mode-coupling theory and the so-called dynamic transition predicted by the static replica approach. Following Franz and Parisi [Phys. Rev. Lett. 79, 2486 (1997)], we consider a system of particles in a metastable state characterized by non-trivial correlations with a quenched configuration. We show that the assumption that in a metastable state particle currents vanish leads to an expression for the replica off-diagonal direct correlation function in terms of a replica off-diagonal static four-point correlation function. A factorization approximation for this function results in an approximate closure for the replica off-diagonal direct correlation function. The replica off-diagonal Ornstein-Zernicke equation combined with this closure coincides with the equation for the non-ergodicity parameter derived using the mode-coupling theory.Comment: revised version; to be published in EP

    Role of structural relaxations and vibrational excitations in the high-frequency dynamics of liquids and glasses

    Full text link
    We present theoretical investigation on the high-frequency collective dynamics in liquids and glasses at microscopic length scales and terahertz frequency region based on the mode-coupling theory for ideal liquid-glass transition. We focus on recently investigated issues from inelastic-X-ray-scattering and computer-simulation studies for dynamic structure factors and longitudinal and transversal current spectra: the anomalous dispersion of the high-frequency sound velocity and the nature of the low-frequency excitation called the boson peak. It will be discussed how the sound mode interferes with other low-lying modes present in the system. Thereby, we provide a systematic explanation of the anomalous sound-velocity dispersion in systems -- ranging from high temperature liquid down to deep inside the glass state -- in terms of the contributions from the structural-relaxation processes and from vibrational excitations called the anomalous-oscillation peak (AOP). A possibility of observing negative dispersion -- the {\em decrease} of the sound velocity upon increase of the wave number -- is argued when the sound-velocity dispersion is dominated by the contribution from the vibrational dynamics. We also show that the low-frequency excitation, observable in both of the glass-state longitudinal and transversal current spectra at the same resonance frequency, is the manifestation of the AOP. As a consequence of the presence of the AOP in the transversal current spectra, it is predicted that the transversal sound velocity also exhibits the anomalous dispersion. These results of the theory are demonstrated for a model of the Lennard-Jones system.Comment: 25 pages, 22 figure

    Spatial correlations in sheared isothermal liquids : From elastic particles to granular particles

    Full text link
    Spatial correlations for sheared isothermal elastic liquids and granular liquids are theoretically investigated. Using the generalized fluctuating hydrodynamics, correlation functions for both the microscopic scale and the macroscopic scale are obtained. The existence of the long-range correlation functions obeying power laws has been confirmed. The validity of our theoretical predictions have been verified from the molecular dynamics simulation.Comment: 34 pages, 12 figure

    Morphology of High-Multiplicity Events in Heavy Ion Collisions

    Full text link
    We discuss opportunities that may arise from subjecting high-multiplicity events in relativistic heavy ion collisions to an analysis similar to the one used in cosmology for the study of fluctuations of the Cosmic Microwave Background (CMB). To this end, we discuss examples of how pertinent features of heavy ion collisions including global characteristics, signatures of collective flow and event-wise fluctuations are visually represented in a Mollweide projection commonly used in CMB analysis, and how they are statistically analyzed in an expansion over spherical harmonic functions. If applied to the characterization of purely azimuthal dependent phenomena such as collective flow, the expansion coefficients of spherical harmonics are seen to contain redundancies compared to the set of harmonic flow coefficients commonly used in heavy ion collisions. Our exploratory study indicates, however, that these redundancies may offer novel opportunities for a detailed characterization of those event-wise fluctuations that remain after subtraction of the dominant collective flow signatures. By construction, the proposed approach allows also for the characterization of more complex collective phenomena like higher-order flow and other sources of fluctuations, and it may be extended to the characterization of phenomena of non-collective origin such as jets.Comment: Matches version accepted for publication in Physical Review C. 13 pages, 9 figure

    ISO far-infrared observations of rich galaxy clusters II. Sersic 159-03

    Full text link
    The far-infrared emission from rich galaxy clusters is investigated. Maps have been obtained by ISO at 60, 100, 135, and 200 microns using the PHT-C camera. Ground based imaging and spectroscopy were also acquired. Here we present the results for the cooling flow cluster Sersic 159-03. An infrared source coincident with the dominant cD galaxy is found. Some off-center sources are also present, but without any obvious counterparts.Comment: 6 pages, 4 postscript figures, accepted for publication in `Astronomy and Astrophysics
    • …
    corecore