320 research outputs found
Cancer with unknown primary: finding a needle in a hay stack
Detection and resection of small neuroendocrine tumours (NET) is like finding a needle in a hay stack. Use of specific tracers such as 68Ga-DOTATOC in a PET/CT study has been proven to have a high sensitivity and specificity to cells expressing somatostatin-SSR receptors. The use of 99mTc-Octreotide to detect neuroendocrine tumours during surgery is an effective adjunct for therapy. We here present a clinical case of patient with NET where these modalities help in both diagnostic and therapeutic surgery
Treatment response evaluation with (18)F-FDG PET/CT and (18)F-NaF PET/CT in multiple myeloma patients undergoing high-dose chemotherapy and autologous stem cell transplantation.
AIM
The aim of this study was to assess the combined use of the radiotracers (18)F-FDG and (18)F-NaF in treatment response evaluation of a group of multiple myeloma (MM) patients undergoing high-dose chemotherapy (HDT) followed by autologous stem cell transplantation (ASCT) by means of static (whole-body) and dynamic PET/CT (dPET/CT).
PATIENTS AND METHODS
Thirty-four patients with primary, previously untreated MM scheduled for treatment with HDT followed by ASCT were enrolled in the study. All patients underwent PET/CT scanning with (18)F-FDG and (18)F-NaF before and after therapy. Treatment response by means of PET/CT was assessed according to the European Organization for Research and Treatment of Cancer (EORTC) 1999 criteria. The evaluation of dPET/CT studies was based on qualitative evaluation, semi-quantitative (SUV) calculation, and quantitative analysis based on two-tissue compartment modelling and a non-compartmental approach leading to the extraction of fractal dimension (FD).
RESULTS
An analysis was possible in 29 patients: three with clinical complete response (CR) and 26 with non-CR (13 patients near complete response-nCR, four patients very good partial response-VGPR, nine patients partial response-PR). After treatment, (18)F-FDG PET/CT was negative in 14/29 patients and positive in 15/29 patients, showing a sensitivity of 57.5 % and a specificity of 100 %. According to the EORTC 1999 criteria, (18)F-FDG PET/CT-based treatment response revealed CR in 14 patients ((18)F-FDG PET/CT CR), PR in 11 patients ((18)F-FDG PET/CT PR) and progressive disease in four patients ((18)F-FDG PET/CT PD). In terms of (18)F-NaF PET/CT, 4/29 patients (13.8 %) had a negative baseline scan, thus failed to depict MM. Regarding the patients for which a direct lesion-to-lesion comparison was feasible, (18)F-NaF PET/CT depicted 56 of the 129 (18)F-FDG positive lesions (43 %). Follow-up (18)F-NaF PET/CT showed persistence of 81.5 % of the baseline (18)F-NaF positive MM lesions after treatment, despite the fact that 64.7 % of them had turned to (18)F-FDG negative. Treatment response according to (18)F-NaF PET/CT revealed CR in one patient ((18)F-NaF PET/CT CR), PR in five patients ((18)F-NaF PET/CT PR), SD in 12 patients ((18)F-NaF PET/CT SD), and PD in seven patients ((18)F-NaF PET/CT PD). Dynamic (18)F-FDG and (18)F-NaF PET/CT studies showed that SUVaverage, SUVmax, as well as the kinetic parameters K1, influx and FD from reference bone marrow and skeleton responded to therapy with a significant decrease (p < 0.001).
CONCLUSION
F-FDG PET/CT demonstrated a sensitivity of 57.7 % and a specificity of 100 % in treatment response evaluation of MM. Despite its limited sensitivity, the performance of (18)F-FDG PET/CT was satisfactory, given that 6/9 false negative patients in follow-up scans (66.7 %) were clinically characterized as nCR, a disease stage with very low tumor mass. On the other hand, (18)F-NaF PET/CT does not seem to add significantly to (18)F-FDG PET/CT in treatment response evaluation of MM patients undergoing HDT and ASCT, at least shortly after therapy
Monitoring HSVtk suicide gene therapy: the role of [18F]FHPG membrane transport
Favourable pharmacokinetics of the prodrug are essential for successful HSVtk/ganciclovir (GCV) suicide gene therapy. [F-18] FHPG PET might be a suitable technique to assess the pharmacokinetics of the prodrug GCV noninvasively, provided that [F-18] FHPG mimics the behaviour of GCV. Since membrane transport is an important aspect of the pharmacokinetics of the prodrug, we investigated the cellular uptake mechanism of [F-18] FHPG in an HSVtk expressing C6 rat glioma cell line and in tumour- bearing rats. The nucleoside transport inhibitors dipyridamol, NBMPR and 2- chloroadenosine did not significantly affect the [F-18] FHPG uptake in vitro. Thymidine and uridine significantly decreased [F-18] FHPG uptake by 84 and 58%, respectively, but an enzyme assay revealed that this decline was due to inhibition of the HSVtk enzyme rather than membrane transport. Nucleobase transport inhibitors, thymine and adenine, caused a 58 and 55% decline in tracer uptake, respectively. In vivo, the ratio of [F-18] FHPG uptake in C6tk and C6 tumours decreased from 3.070.5 to 1.070.2 after infusion of adenine. Thus, in our tumour model, [F-18] FHPG transport exclusively occurred via purine nucleobase transport. In this respect, FHPG does not resemble GCV, which is predominantly taken up via the nucleoside transporter, but rather acyclovir, which is also taken up via the purine nucleobase carrier
Contrast-enhanced ultrasound monitoring of perfusion changes in hepatic neuroendocrine metastases after systemic versus selective arterial ¹⁷⁷Lu/⁹⁰Y-DOTATOC and ²¹³Bi-DOTATOC radiopeptide therapy
Aim - radiopeptide therapy with beta emitter labeled ¹⁷⁷Lu/⁹⁰Y- DOTA(0)-Phe(1)-Tyr(3)-octreotide (DOTATOC) and more recently also alpha emitting ²¹³Bi-DOTATOC are promising new treatments for neuroendocrine tumors. No early predictors for treatment response have been recognized and tumor-shrinkage after radiation therapy appears slowly. In some solid tumors a decline in tumor perfusion was found predictive of final treatment response but the gold standard multiphase computed tomography (CT) has a high radiation burden. Therefore we evaluated the ability of contrast-enhanced ultrasound (CEUS) to evaluate tumor perfusion as a response criteria. 14 patients with hepatic neuroendocrine tumor (NET) metastases were enrolled in the retrospective study. Eleven patients were treated with beta-emitting ¹⁷⁷Lu/⁹⁰Y-DOTATOC, either intravenous (i.v.) (n = 5) or intra-arterial (i.a.) (n = 6) and three patients received alpha-emitting ²¹³Bi-DOTATOC (i.a.). CEUS and contrast-enhanced CT (CE-CT) were performed before and 3 months after treatment. CE-CT and CEUS presented comparable results in the baseline study and in the assessment of perfusion changes due to the different treatment regimes. A therapy related decrease in tumor perfusion is an early predictor of longterm morphologic response. Conclusion: CEUS is available and radiation free technique which showed comparable results for perfusion and diameter of liver metastases compared to CE-CT. Intensity reduction in an arterial phase CEUS can be seen as a positive sign indicating long term tumor response to treatment. Therefore CEUS may be considered as an imaging modality for monitoring early treatment after focal alpha and beta targeted therapy. Key Words: contrast-enhanced ultrasound, radionuclide therapy, treatment response, DOTATOC PET/CT
Green tea halts progression of cardiac transthyretin amyloidosis: an observational report
BACKGROUND: Treatment options in patients with amyloidotic transthyretin (ATTR) cardiomyopathy are limited. Epigallocatechin-3-gallate (EGCG), the most abundant catechin in green tea (GT), inhibits fibril formation from several amyloidogenic proteins in vitro. Thus, it might also halt progression of TTR amyloidosis. This is a single-center observational report on the effects of GT consumption in patients with ATTR cardiomopathy. METHODS: 19 patients with ATTR cardiomyopathy were evaluated by standard blood tests, echocardiography, and cardiac MRI (n = 9) before and after consumption of GT and/or green tea extracts (GTE) for 12 months. RESULTS: Five patients were not followed up for reasons of death (n = 2), discontinuation of GT/GTE consumption (n = 2), and heart transplantation (n = 1). After 12 months no increase of left ventricular (LV) wall thickness and LV myocardial mass was observed by echocardiography. In the subgroup of patients evaluated by cardiac MRI a mean decrease of LV myocardial mass (-12.5 %) was detected in all patients. This was accompanied by an increase of mean mitral annular systolic velocity of 9 % in all 14 patients. Total cholesterol (191.9 ± 8.9 vs. 172.7 ± 9.4 mg/dL; p < 0.01) and LDL cholesterol (105.8 ± 7.6 vs. 89.5 ± 8.0 mg/dL; p < 0.01) decreased significantly during the observational period. No serious adverse effects were reported by any of the participants. CONCLUSIONS: Our observation suggests an inhibitory effect of GT and/or GTE on the progression of cardiac amyloidosis. We propose a randomized placebo-controlled investigation to confirm our observation
Nonequilibrium Josephson effect in mesoscopic ballistic multiterminal SNS junctions
We present a detailed study of nonequilibrium Josephson currents and
conductance in ballistic multiterminal SNS-devices. Nonequilibrium is created
by means of quasiparticle injection from a normal reservoir connected to the
normal part of the junction. By applying a voltage at the normal reservoir the
Josephson current can be suppressed or the direction of the current can be
reversed. For a junction longer than the thermal length, , the
nonequilibrium current increases linearly with applied voltage, saturating at a
value equal to the equilibrium current of a short junction. The conductance
exhibits a finite bias anomaly around . For symmetric
injection, the conductance oscillates -periodically with the phase
difference between the superconductors, with position of the minimum
( or ) dependent on applied voltage and temperature. For
asymmetric injection, both the nonequilibrium Josephson current and the
conductance becomes -periodic in phase difference. Inclusion of barriers
at the NS-interfaces gives rise to a resonant behavior of the total Josephson
current with respect to junction length with a period . Both
three and four terminal junctions are studied.Comment: 21 pages, 19 figures, submitted to Phys. Rev.
Microscopic self-consistent theory of Josephson junctions including dynamical electron correlations
We formulate a fully self-consistent, microscopic model to study the
retardation and correlation effects of the barrier within a Josephson junction.
The junction is described by a series of planes, with electronic correlation
included through a local self energy for each plane. We calculate current-phase
relationships for various junctions, which include non-magnetic impurities in
the barrier region, or an interfacial scattering potential. Our results
indicate that the linear response of the supercurrent to phase across the
barrier region is a good, but not exact indicator of the critical current. Our
calculations of the local density of states show the current-carrying Andreev
bound states and their energy evolution with the phase difference across the
junction.
We calculate the figure of merit for a Josephson junction, which is the
product of the critical current, Ic, and the normal state resistance, R(N), for
junctions with different barrier materials. The normal state resistance is
calculated using the Kubo formula, for a system with zero current flow and no
superconducting order. Semiclassical calculations would predict that these two
quantities are determined by the transmission probabilities of electrons in
such a way that the product is constant for a given superconductor at fixed
temperature. Our self-consistent solutions for different types of barrier
indicate that this is not the case. We suggest some forms of barrier which
could increase the Ic.R(N) product, and hence improve the frequency response of
a Josephson device.Comment: 46 pages, 21 figure
Image fusion using CT, MRI and PET for treatment planning, navigation and follow up in percutaneous RFA
Aim: To evaluate the feasibility of fusion of morphologic and functional imaging modalities to facilitate treatment planning, probe placement,
probe re-positioning, and early detection of residual disease following radiofrequency ablation (RFA) of cancer. Methods: Multi-modality datasets
were separately acquired that included functional (FDG-PET and DCE-MRI) and standard morphologic studies (CT and MRI). Different
combinations of imaging modalities were registered and fused prior to, during, and following percutaneous image-guided tumor ablation with
radiofrequency. Different algorithms and visualization tools were evaluated for both intra-modality and inter-modality image registration using
the software MIPAV (Medical Image Processing, Analysis and Visualization). Semi-automated and automated registration algorithms were used
on astandard PC workstation: 1) landmark-based least-squares rigid registration, 2) landmark-based thin-plate spline elastic registration, and
3) automatic voxel-similarity, affine registration. Results: Intra- and inter-modality image fusion were successfully performed prior to, during
and after RFA procedures. Fusion of morphologic and functional images provided a useful view of the spatial relationship of lesion structure and
functional significance. Fused axial images and segmented three-dimensional surface models were used for treatment planning and post-RFA
evaluation, to assess potential for optimizing needle placement during procedures. Conclusion: Fusion of morphologic and functional images
is feasible before, during and after radiofrequency ablation of tumors in abdominal organs. For routine use, the semi-automated registration
algorithms may be most practical. Image fusion may facilitate interventional procedures like RFA and should be further evaluated
- …