54 research outputs found

    Nodal domains in open microwave systems

    Full text link
    Nodal domains are studied both for real ψR\psi_R and imaginary part ψI\psi_I of the wavefunctions of an open microwave cavity and found to show the same behavior as wavefunctions in closed billiards. In addition we investigate the variation of the number of nodal domains and the signed area correlation by changing the global phase ϕg\phi_g according to ψR+iψI=eiϕg(ψR+iψI)\psi_R+i\psi_I=e^{i\phi_g}(\psi_R'+i\psi_I'). This variation can be qualitatively, and the correlation quantitatively explained in terms of the phase rigidity characterising the openness of the billiard.Comment: 7 pages, 10 figures, submitted to PR

    On the Nodal Count Statistics for Separable Systems in any Dimension

    Full text link
    We consider the statistics of the number of nodal domains aka nodal counts for eigenfunctions of separable wave equations in arbitrary dimension. We give an explicit expression for the limiting distribution of normalised nodal counts and analyse some of its universal properties. Our results are illustrated by detailed discussion of simple examples and numerical nodal count distributions.Comment: 21 pages, 4 figure

    Analytic Solution of Emden-Fowler Equation and Critical Adsorption in Spherical Geometry

    Full text link
    In the framework of mean-field theory the equation for the order-parameter profile in a spherically-symmetric geometry at the bulk critical point reduces to an Emden-Fowler problem. We obtain analytic solutions for the surface universality class of extraordinary transitions in d=4d=4 for a spherical shell, which may serve as a starting point for a pertubative calculation. It is demonstrated that the solution correctly reproduces the Fisher-de Gennes effect in the limit of the parallel-plate geometry.Comment: (to be published in Z. Phys. B), 7 pages, 1 figure, uuencoded postscript file, 8-9

    Isospectral domains with mixed boundary conditions

    Full text link
    We construct a series of examples of planar isospectral domains with mixed Dirichlet-Neumann boundary conditions. This is a modification of a classical problem proposed by M. Kac.Comment: 9 figures. Statement of Theorem 5.1 correcte

    Nodal domains statistics - a criterion for quantum chaos

    Get PDF
    We consider the distribution of the (properly normalized) numbers of nodal domains of wave functions in 2-dd quantum billiards. We show that these distributions distinguish clearly between systems with integrable (separable) or chaotic underlying classical dynamics, and for each case the limiting distribution is universal (system independent). Thus, a new criterion for quantum chaos is provided by the statistics of the wave functions, which complements the well established criterion based on spectral statistics.Comment: 4 pages, 5 figures, revte

    Convolutionless Non-Markovian master equations and quantum trajectories: Brownian motion revisited

    Full text link
    Stochastic Schr{\"o}dinger equations for quantum trajectories offer an alternative and sometimes superior approach to the study of open quantum system dynamics. Here we show that recently established convolutionless non-Markovian stochastic Schr{\"o}dinger equations may serve as a powerful tool for the derivation of convolutionless master equations for non-Markovian open quantum systems. The most interesting example is quantum Brownian motion (QBM) of a harmonic oscillator coupled to a heat bath of oscillators, one of the most-employed exactly soluble models of open system dynamics. We show explicitly how to establish the direct connection between the exact convolutionless master equation of QBM and the corresponding convolutionless exact stochastic Schr\"odinger equation.Comment: 18 pages, RevTe

    Quantum ergodicity for graphs related to interval maps

    Full text link
    We prove quantum ergodicity for a family of graphs that are obtained from ergodic one-dimensional maps of an interval using a procedure introduced by Pakonski et al (J. Phys. A, v. 34, 9303-9317 (2001)). As observables we take the L^2 functions on the interval. The proof is based on the periodic orbit expansion of a majorant of the quantum variance. Specifically, given a one-dimensional, Lebesgue-measure-preserving map of an interval, we consider an increasingly refined sequence of partitions of the interval. To this sequence we associate a sequence of graphs, whose directed edges correspond to elements of the partitions and on which the classical dynamics approximates the Perron-Frobenius operator corresponding to the map. We show that, except possibly for subsequences of density 0, the eigenstates of the quantum graphs equidistribute in the limit of large graphs. For a smaller class of observables we also show that the Egorov property, a correspondence between classical and quantum evolution in the semiclassical limit, holds for the quantum graphs in question.Comment: 20 pages, 1 figur

    Counting nodal domains on surfaces of revolution

    Full text link
    We consider eigenfunctions of the Laplace-Beltrami operator on special surfaces of revolution. For this separable system, the nodal domains of the (real) eigenfunctions form a checker-board pattern, and their number νn\nu_n is proportional to the product of the angular and the "surface" quantum numbers. Arranging the wave functions by increasing values of the Laplace-Beltrami spectrum, we obtain the nodal sequence, whose statistical properties we study. In particular we investigate the distribution of the normalized counts νnn\frac{\nu_n}{n} for sequences of eigenfunctions with KnK+ΔKK \le n\le K + \Delta K where K,ΔKNK,\Delta K \in \mathbb{N}. We show that the distribution approaches a limit as K,ΔKK,\Delta K\to\infty (the classical limit), and study the leading corrections in the semi-classical limit. With this information, we derive the central result of this work: the nodal sequence of a mirror-symmetric surface is sufficient to uniquely determine its shape (modulo scaling).Comment: 36 pages, 8 figure

    Casimir Forces at Tricritical Points: Theory and Possible Experiments

    Full text link
    Using field-theoretical methods and exploiting conformal invariance, we study Casimir forces at tricritical points exerted by long-range fluctuations of the order-parameter field. Special attention is paid to the situation where the symmetry is broken by the boundary conditions (extraordinary transition). Besides the parallel-plate configuration, we also discuss the geometries of two separate spheres and a single sphere near a planar wall, which may serve as a model for colloidal particles immersed in a fluid. In the concrete case of ternary mixtures a quantitative comparison with critical Casimir and van der Waals forces shows that, especially with symmetry-breaking boundaries, the tricritical Casimir force is considerably stronger than the critical one and dominates also the competing van der Waals force.Comment: 18 pages, Latex, 3 postscript figures, uses Elsevier style file

    Specific CT 3D rendering of the treatment zone after Irreversible Electroporation (IRE) in a pig liver model: the “Chebyshev Center Concept” to define the maximum treatable tumor size

    Get PDF
    Background: Size and shape of the treatment zone after Irreversible electroporation (IRE) can be difficult to depict due to the use of multiple applicators with complex spatial configuration. Exact geometrical definition of the treatment zone, however, is mandatory for acute treatment control since incomplete tumor coverage results in limited oncological outcome. In this study, the “Chebyshev Center Concept” was introduced for CT 3d rendering to assess size and position of the maximum treatable tumor at a specific safety margin. Methods: In seven pig livers, three different IRE protocols were applied to create treatment zones of different size and shape: Protocol 1 (n = 5 IREs), Protocol 2 (n = 5 IREs), and Protocol 3 (n = 5 IREs). Contrast-enhanced CT was used to assess the treatment zones. Technique A consisted of a semi-automated software prototype for CT 3d rendering with the “Chebyshev Center Concept” implemented (the “Chebyshev Center” is the center of the largest inscribed sphere within the treatment zone) with automated definition of parameters for size, shape and position. Technique B consisted of standard CT 3d analysis with manual definition of the same parameters but position. Results: For Protocol 1 and 2, short diameter of the treatment zone and diameter of the largest inscribed sphere within the treatment zone were not significantly different between Technique A and B. For Protocol 3, short diameter of the treatment zone and diameter of the largest inscribed sphere within the treatment zone were significantly smaller for Technique A compared with Technique B (41.1 ± 13.1 mm versus 53.8 ± 1.1 mm and 39.0 ± 8.4 mm versus 53.8 ± 1.1 mm; p < 0.05 and p < 0.01). For Protocol 1, 2 and 3, sphericity of the treatment zone was significantly larger for Technique A compared with B. Conclusions: Regarding size and shape of the treatment zone after IRE, CT 3d rendering with the “Chebyshev Center Concept” implemented provides significantly different results compared with standard CT 3d analysis. Since the latter overestimates the size of the treatment zone, the “Chebyshev Center Concept” could be used for a more objective acute treatment control
    corecore