15,559 research outputs found

    The electromagnetic form factors of the proton in the timelike region

    Full text link
    The reactions ppbar -> e+e- and e+e- -> ppbar are analyzed in the near-threshold region. Specific emphasis is put on the role played by the interaction in the initial- or final antinucleon-nucleon state which is taken into account rigorously. For that purpose a recently published NNbar potential derived within chiral effective field theory and fitted to results of a new partial-wave analysis of ppbar scattering data is employed. Our results provide strong support for the conjecture that the pronounced energy dependence of the e+e- ppbar cross section, seen in pertinent experiments, is primarily due to the ppbar interaction. Predictions for the proton electromagnetic form factors G_E and G_M in the timelike region, close to the NNbar threshold, and for spin-dependent observables are presented. The steep rise of the effective form factor for energies close to the ppbar threshold is explained solely in terms of the ppbar interaction. The corresponding experimental information is quantitatively described by our calculation.Comment: 14 pages, 11 figure

    Efficiency of Nonlinear Particle Acceleration at Cosmic Structure Shocks

    Full text link
    We have calculated the evolution of cosmic ray (CR) modified astrophysical shocks for a wide range of shock Mach numbers and shock speeds through numerical simulations of diffusive shock acceleration (DSA) in 1D quasi- parallel plane shocks. The simulations include thermal leakage injection of seed CRs, as well as pre-existing, upstream CR populations. Bohm-like diffusion is assumed. We model shocks similar to those expected around cosmic structure pancakes as well as other accretion shocks driven by flows with upstream gas temperatures in the range T0=104107.6T_0=10^4-10^{7.6}K and shock Mach numbers spanning Ms=2.4133M_s=2.4-133. We show that CR modified shocks evolve to time-asymptotic states by the time injected particles are accelerated to moderately relativistic energies (p/mc \gsim 1), and that two shocks with the same Mach number, but with different shock speeds, evolve qualitatively similarly when the results are presented in terms of a characteristic diffusion length and diffusion time. For these models the time asymptotic value for the CR acceleration efficiency is controlled mainly by shock Mach number. The modeled high Mach number shocks all evolve towards efficiencies 50\sim 50%, regardless of the upstream CR pressure. On the other hand, the upstream CR pressure increases the overall CR energy in moderate strength shocks (MsafewM_s \sim {\rm a few}). (abridged)Comment: 23 pages, 12 ps figures, accepted for Astrophysical Journal (Feb. 10, 2005

    Spatial soliton robustness against spatially anisotropic phase perturbations

    Get PDF
    We demonstrate experimentally that spatial solitons in AlGaAs waveguides are resilient against spatially anisotropic perturbations in their phase caused by introducing a wedge in the soliton propagation path. In agreement with numerical simulations, the solitons maintained their initial beam shape and width, independent of the fraction of the soliton beam intercepted by the wedge

    Spin Fluctuation and Persistent Current in a Mesoscopic Ring Coupled to a Quantum Dot

    Full text link
    We investigate the persistent current influenced by the spin fluctuations in a mesoscopic ring weakly coupled to a quantum dot. It is shown that the Kondo effect gives rise to some unusual features of the persistent current in the limit where the charge transfer between two subsystems is suppressed. Various aspects of the crossover from a delocalized to a localized dot limit are discussed in relation with the effect of the coherent response of the Kondo cloud to the Aharonov-Bohm flux.Comment: 4 pages, 2 figure

    Astrophysical Fluids of Novae: High Resolution Pre-decay X-ray spectrum of V4743 Sagittarii

    Full text link
    Eight X-ray observations of V4743 Sgr (2002), observed with Chandra and XMM-Newton are presented. The nova turned off some time between days 301.9 and 371, and the X-ray flux subsequently decreased from day 301.9 to 526 following an exponential decline time scale of (96±3)(96 \pm 3) days. We use the absorption lines present in the SSS spectrum for diagnostic purposes, and characterize the physics and the dynamics of the expanding atmosphere during the explosion of the nova. The information extracted from this first stage is then used as input for computing full photoionization models of the ejecta in V4743 Sgr. The SSS spectrum is modeled with a simple black-body and multiplicative Gaussian lines, which provides us of a general kinematical picture of the system, before it decays to its faint phase (Ness et al. 2003). In the grating spectra taken between days 180.4 and 370, we can resolve the line profiles of absorption lines arising from H-like and He-like C, N, and O, including transitions involving higher principal quantum numbers. Except for a few interstellar lines, all lines are significantly blue-shifted, yielding velocities between 1000 and 6000 km/s which implies an ongoing mass loss. It is shown that significant expansion and mass loss occur during this phase of the explosion, at a rate M˙(35)×104 (LL38) M/yr\dot{M} \approx (3-5) \times 10^{-4} ~ (\frac{L}{L_{38}}) ~ M_{\odot}/yr. Our measurements show that the efficiency of the amount of energy used for the motion of the ejecta, defined as the ratio between the kinetic luminosity LkinL_{\rm kin} and the radiated luminosity LradL_{\rm rad}, is of the order of one.Comment: 25 pages, 9 figures. Accepted in book: Recent Advances in Fluid Dynamics with Environmental Applications, pp.365-39

    Nonlinear Transport and Current Fluctuation in an AB Ring with a Quantum Dot

    Full text link
    Nonequilibrium steady states are explicitly constructed for a noninteracting electron model of an Aharonov-Bohm (AB) ring with a quantum dot (QD) with the aid of asymptotic fields. The Fano line shapes and AB oscillations are shown to strongly depend on the bias voltage. Current fluctuations are studied as well.Comment: 4pages, 6figure

    Crossover critical behavior of Ga1-xMnxAs

    Full text link
    The critical behavior of Ga1-xMnxAs in a close vicinity of the Curie temperature was experimentally studied by using the thermal diffusivity measurements. Taking into account that the inverse of the thermal diffusivity has the same critical behavior as the specific heat, the critical exponent {\alpha} for the samples investigated has been determined. With approaching close to the critical temperature, the crossover from the mean-field-like to the Ising-like critical behavior has been observed. From the crossover behavior the values of the Ginzburg number and the exchange interaction length in Ga1-xMnxAs with different concentrations of Mn were determined.Comment: 17 pages, 5 figure

    Strongly Correlated Fractional Quantum Hall Line Junctions

    Full text link
    We have studied a clean finite-length line junction between interacting counterpropagating single-branch fractional-quantum-Hall edge channels. Exact solutions for low-lying excitations and transport properties are obtained when the two edges belong to quantum Hall systems with different filling factors and interact via the long-range Coulomb interaction. Charging effects due to the coupling to external edge-channel leads are fully taken into account. Conductances and power laws in the current-voltage characteristics of tunneling are strongly affected by inter-edge correlations.Comment: 4 pages, 1 figure, RevTex4, typos corrected + references added, to appear in Phys. Rev. Let

    Natural Islands for a 125 GeV Higgs in the scale-invariant NMSSM

    Full text link
    We study whether a 125 GeV standard model-like Higgs boson can be accommodated within the scale-invariant NMSSM in a way that is natural in all respects, i.e., not only is the stop mass and hence its loop contribution to Higgs mass of natural size, but we do not allow significant tuning of NMSSM parameters as well. We pursue as much as possible an analytic approach which gives clear insights on various ways to accommodate such a Higgs mass, while conducting complementary numerical analyses. We consider both scenarios with singlet-like state being heavier and lighter than SM-like Higgs. With A-terms being small, we find for the NMSSM to be perturbative up to GUT scale, it is not possible to get 125 GeV Higgs mass, which is true even if we tune parameters of NMSSM. If we allow some of the couplings to become non-perturbative below the GUT scale, then the non-tuned option implies that the singlet self-coupling, kappa, is larger than the singlet-Higgs coupling, lambda, which itself is order 1. This leads to a Landau pole for these couplings close to the weak scale, in particular below ~10^4 TeV. In both the perturbative and non-perturbative NMSSM, allowing large A_lambda, A_kappa gives "more room" to accommodate a 125 GeV Higgs, but a tuning of these A-terms may be needed. In our analysis we also conduct a careful study of the constraints on the parameter space from requiring global stability of the desired vacuum fitting a 125 GeV Higgs, which is complementary to existing literature. In particular, as the singlet-Higgs coupling lambda increases, vacuum stability becomes more serious of an issue.Comment: 34 pages, 4 figures, references added, minor corrections to text and figures, version to be published in JHE

    Influence of Surfactant-Mediated Interparticle Contacts on the Mechanical Stability of Supraparticles

    Get PDF
    [Image: see text] Colloidal supraparticles are micron-scale spherical assemblies of uniform primary particles, which exhibit emergent properties of a colloidal crystal, yet exist as a dispersible powder. A prerequisite to utilize these emergent functionalities is that the supraparticles maintain their mechanical integrity upon the mechanical impacts that are likely to occur during processing. Understanding how the internal structure relates to the resultant mechanical properties of a supraparticle is therefore of general interest. Here, we take the example of supraparticles templated from water/fluorinated oil emulsions in droplet-based microfluidics and explore the effect of surfactants on their mechanical properties. Stable emulsions can be generated by nonionic block copolymers consisting of a hydrophilic and fluorophilic block and anionic fluorosurfactants widely available under the brand name Krytox. The supraparticles formed in the presence of both types of surfactants appear structurally similar, but differ greatly in their mechanical properties. While the nonionic surfactant induces superior mechanical stability and ductile fracture behavior, the anionic Krytox surfactant leads to weak supraparticles with brittle fracture. We complement this macroscopic picture with Brillouin light spectroscopy that is very sensitive to the interparticle contacts for subnanometer-thick adsorbed layers atop of the nanoparticle. While the anionic Krytox does not significantly affect the interparticle bonds, the amphiphilic nonionic surfactant drastically strengthens these bonds to the point that individual particle vibrations are not resolved in the experimental spectrum. Our results demonstrate that seemingly subtle changes in the physicochemical properties of supraparticles can drastically impact the resultant mechanical properties
    corecore