839 research outputs found

    Surgical treatment of vertigo

    Get PDF

    Management of intratemporal facial nerve injuries

    Get PDF

    Random Field and Random Anisotropy Effects in Defect-Free Three-Dimensional XY Models

    Full text link
    Monte Carlo simulations have been used to study a vortex-free XY ferromagnet with a random field or a random anisotropy on simple cubic lattices. In the random field case, which can be related to a charge-density wave pinned by random point defects, it is found that long-range order is destroyed even for weak randomness. In the random anisotropy case, which can be related to a randomly pinned spin-density wave, the long-range order is not destroyed and the correlation length is finite. In both cases there are many local minima of the free energy separated by high entropy barriers. Our results for the random field case are consistent with the existence of a Bragg glass phase of the type discussed by Emig, Bogner and Nattermann.Comment: 10 pages, including 2 figures, extensively revise

    Random Field Models for Relaxor Ferroelectric Behavior

    Full text link
    Heat bath Monte Carlo simulations have been used to study a four-state clock model with a type of random field on simple cubic lattices. The model has the standard nonrandom two-spin exchange term with coupling energy JJ and a random field which consists of adding an energy DD to one of the four spin states, chosen randomly at each site. This Ashkin-Teller-like model does not separate; the two random-field Ising model components are coupled. When D/J=3D / J = 3, the ground states of the model remain fully aligned. When D/J≥4D / J \ge 4, a different type of ground state is found, in which the occupation of two of the four spin states is close to 50%, and the other two are nearly absent. This means that one of the Ising components is almost completely ordered, while the other one has only short-range correlations. A large peak in the structure factor S(k)S (k) appears at small kk for temperatures well above the transition to long-range order, and the appearance of this peak is associated with slow, "glassy" dynamics. The phase transition into the state where one Ising component is long-range ordered appears to be first order, but the latent heat is very small.Comment: 7 pages + 12 eps figures, to appear in Phys Rev

    Power-law correlations and orientational glass in random-field Heisenberg models

    Full text link
    Monte Carlo simulations have been used to study a discretized Heisenberg ferromagnet (FM) in a random field on simple cubic lattices. The spin variable on each site is chosen from the twelve [110] directions. The random field has infinite strength and a random direction on a fraction x of the sites of the lattice, and is zero on the remaining sites. For x = 0 there are two phase transitions. At low temperatures there is a [110] FM phase, and at intermediate temperature there is a [111] FM phase. For x > 0 there is an intermediate phase between the paramagnet and the ferromagnet, which is characterized by a |k|^(-3) decay of two-spin correlations, but no true FM order. The [111] FM phase becomes unstable at a small value of x. At x = 1/8 the [110] FM phase has disappeared, but the power-law correlated phase survives.Comment: 8 pages, 12 Postscript figure

    Disorder Averaging and Finite Size Scaling

    Full text link
    We propose a new picture of the renormalization group (RG) approach in the presence of disorder, which considers the RG trajectories of each random sample (realization) separately instead of the usual renormalization of the averaged free energy. The main consequence of the theory is that the average over randomness has to be taken after finding the critical point of each realization. To demonstrate these concepts, we study the finite-size scaling properties of the two-dimensional random-bond Ising model. We find that most of the previously observed finite-size corrections are due to the sample-to-sample fluctuation of the critical temperature and scaling is more adequate in terms of the new scaling variables.Comment: 4 pages, 6 figures include

    Quasi-long range order in the random anisotropy Heisenberg model

    Full text link
    The large distance behaviors of the random field and random anisotropy Heisenberg models are studied with the functional renormalization group in 4−ϵ4-\epsilon dimensions. The random anisotropy model is found to have a phase with the infinite correlation radius at low temperatures and weak disorder. The correlation function of the magnetization obeys a power law <m(r1)m(r2)>∼∣r1−r2∣−0.62ϵ<{\bf m}({\bf r}_1) {\bf m}({\bf r}_2)>\sim| {\bf r}_1-{\bf r}_2|^{-0.62\epsilon}. The magnetic susceptibility diverges at low fields as χ∼H−1+0.15ϵ\chi\sim H^{-1+0.15\epsilon}. In the random field model the correlation radius is found to be finite at the arbitrarily weak disorder.Comment: 4 pages, REVTe

    Quasi-long-range order in the random anisotropy Heisenberg model: functional renormalization group in 4-\epsilon dimensions

    Full text link
    The large distance behaviors of the random field and random anisotropy O(N) models are studied with the functional renormalization group in 4-\epsilon dimensions. The random anisotropy Heisenberg (N=3) model is found to have a phase with the infinite correlation radius at low temperatures and weak disorder. The correlation function of the magnetization obeys a power law < m(x) m(y) >\sim |x-y|^{-0.62\epsilon}. The magnetic susceptibility diverges at low fields as \chi \sim H^{-1+0.15\epsilon}. In the random field O(N) model the correlation radius is found to be finite at the arbitrarily weak disorder for any N>3. The random field case is studied with a new simple method, based on a rigorous inequality. This approach allows one to avoid the integration of the functional renormalization group equations.Comment: 12 pages, RevTeX; a minor change in the list of reference
    • …
    corecore