307 research outputs found

    Identification of parvalbumin interneurons as cellular substrate of fear memory persistence

    Get PDF
    Parvalbumin-positive (PV) basket cells provide perisomatic inhibition in the cortex and hippocampus and control generation of memory-related network activity patterns, such as sharp wave ripples (SPW-R). Deterioration of this class of fast-spiking interneurons has been observed in neuropsychiatric disorders and evidence from animal models suggests their involvement in the acquisition and extinction of fear memories. Here, we used mice with neuron type-targeted expression of the presynaptic gain-of-function glycine receptor RNA variant GlyR {beta}3L(185L) to genetically enhance the network activity of PV interneurons. These mice showed reduced extinction of contextual fear memory but normal auditory cued fear memory. They furthermore displayed increase of SPW-R activity in area CA3 and CA1 and facilitated propagation of this particular network activity pattern, as determined in ventral hippocampal slice preparations. Individual freezing levels during extinction and SPW-R propagation were correlated across genotypes. The same was true for parvalbumin immunoreactivity in the ventral hippocampus, which was generally augmented in the GlyR mutant mice and correlated with individual freezing levels. Together, these results identify PV interneurons as critical cellular substrate of fear memory persistence and associated SPW-R activity in the hippocampus. Our findings may be relevant for the identification and characterization of physiological correlates for posttraumatic stress and anxiety disorders

    Screening of medicinal plant extracts as novel DNA gyrase inhibitors

    Get PDF
    Bioactivities of a number of medicinal plants; Alkanna tinctoria (L.) Tausch, Alnus glutinosa (L.) Gaertn., Calamintha nepeta Willk. and C. nepeta, Centaurea iberica Trevir. ex Spreng., Citrus paradisi Macfad., C. paradisi, Citrus sinensis (L.) Osbeck, Colutea cilicica Boiss. & Balansa, Cotinus coggygria Scop., Cuscuta arvensis Beyr. ex Engelm., Equisetum palustre L., Lapsana communis L., Laurus nobilis L., Olea europea L., Plantago major L., Rhus coriaria L, Salvia verticillata L., Sambucus ebulus L., Sedum acre L, Thymus capitatus (L.) Hoffmanns. & Link, T. capitatus, Thymbra spicata L., T. spicata (n: 20), which are used for the prevention and treatment of diverse diseases, were investigated. The antimicrobial activities of extracts were evaluated using broth microdilution assay. The cytotoxicities of extracts were investigated on HeLa cell line by MTT assay. Statistical analysis was performed using GraphPad Prism (5.0). The effects of the extracts, which have the highest antimicrobial activity, on the Escherichia coli and Staphylococcus aureus DNA gyrase gene expression were determined by using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The MICs (µg/ml) of extracts were determined as 32-64, 2-128, 8-128,1-128, 4-128 against Gram-positive, Gram-negative bacteria, yeasts, dermatophytes, and Mycobacterium spp., respectively. No cytotoxicity has been observed in plant extracts tested. DNA gyrase activity was determined for T. capitatus-SFE (128 µg/mL) and L. nobilis-Hx (128 µg/mL) extracts according to the inhibition of DNA gyrase gene expression. Overall, T. capitatus-SFE and L. nobilis-Hx are good candidates for further antimicrobial studies.

    Dynamics of hydration water in deuterated purple membranes explored by neutron scattering

    Get PDF
    The function and dynamics of proteins depend on their direct environment, and much evidence has pointed to a strong coupling between water and protein motions. Recently however, neutron scattering measurements on deuterated and natural-abundance purple membrane (PM), hydrated in H2O and D2O, respectively, revealed that membrane and water motions on the ns–ps time scale are not directly coupled below 260 K (Wood et al. in Proc Natl Acad Sci USA 104:18049–18054, 2007). In the initial study, samples with a high level of hydration were measured. Here, we have measured the dynamics of PM and water separately, at a low-hydration level corresponding to the first layer of hydration water only. As in the case of the higher hydration samples previously studied, the dynamics of PM and water display different temperature dependencies, with a transition in the hydration water at 200 K not triggering a transition in the membrane at the same temperature. Furthermore, neutron diffraction experiments were carried out to monitor the lamellar spacing of a flash-cooled deuterated PM stack hydrated in H2O as a function of temperature. At 200 K, a sudden decrease in lamellar spacing indicated the onset of long-range translational water diffusion in the second hydration layer as has already been observed on flash-cooled natural-abundance PM stacks hydrated in D2O (Weik et al. in J Mol Biol 275:632–634, 2005), excluding thus a notable isotope effect. Our results reinforce the notion that membrane-protein dynamics may be less strongly coupled to hydration water motions than the dynamics of soluble proteins

    Heart re-transplantation in Eurotransplant

    Get PDF
    Internationally 3% of the donor hearts are distributed to re-transplant patients. In Eurotransplant, only patients with a primary graft dysfunction (PGD) within 1 week after heart transplantation (HTX) are indicated for high urgency listing. The aim of this study is to provide evidence for the discussion on whether these patients should still be allocated with priority. All consecutive HTX performed in the period 1981-2015 were included. Multivariate Cox' model was built including: donor and recipient age and gender, ischaemia time, recipient diagnose, urgency status and era. The study population included 18 490 HTX, of these 463 (2.6%) were repeat transplants. The major indications for re-HTX were cardiac allograft vasculopathy (CAV) (50%), PGD (26%) and acute rejection (21%). In a multivariate model, compared with first HTX hazards ratio and 95% confidence interval for repeat HTX were 2.27 (1.83-2.82) for PGD, 2.24 (1.76-2.85) for acute rejection and 1.22 (1.00-1.48) for CAV (P < 0.0001). Outcome after cardiac re-HTX strongly depends on the indication for re-HTX with acceptable outcomes for CAV. In contrast, just 47.5% of all hearts transplanted in patients who were re-transplanted for PGD still functioned at 1-month post-transplant. Alternative options like VA-ECMO should be first offered before opting for acute re-transplantation

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics

    Evidence of coexistence of change of caged dynamics at Tg and the dynamic transition at Td in solvated proteins

    Full text link
    Mossbauer spectroscopy and neutron scattering measurements on proteins embedded in solvents including water and aqueous mixtures have emphasized the observation of the distinctive temperature dependence of the atomic mean square displacements, , commonly referred to as the dynamic transition at some temperature Td. At low temperatures, increases slowly, but it assume stronger temperature dependence after crossing Td, which depends on the time/frequency resolution of the spectrometer. Various authors have made connection of the dynamics of solvated proteins including the dynamic transition to that of glass-forming substances. Notwithstanding, no connection is made to the similar change of temperature dependence of obtained by quasielastic neutron scattering when crossing the glass transition temperature Tg, generally observed in inorganic, organic and polymeric glass-formers. Evidences are presented to show that such change of the temperature dependence of from neutron scattering at Tg is present in hydrated or solvated proteins, as well as in the solvents used unsurprisingly since the latter is just another organic glass-formers. The obtained by neutron scattering at not so low temperatures has contributions from the dissipation of molecules while caged by the anharmonic intermolecular potential at times before dissolution of cages by the onset of the Johari-Goldstein beta-relaxation. The universal change of at Tg of glass-formers had been rationalized by sensitivity to change in volume and entropy of the beta-relaxation, which is passed onto the dissipation of the caged molecules and its contribution to . The same rationalization applies to hydrated and solvated proteins for the observed change of at Tg.Comment: 28 pages, 10 figures, 1 Tabl
    • …
    corecore