183 research outputs found

    Universal temperature scaling of flux line pinning in high-temperature superconducting thin films

    Full text link
    Dissipation-free current transport in high-temperature superconductors is one of the most crucial properties of this class of materials which is directly related to the effective inhibition of flux line movement by defect structures. In this respect epitaxially grown thin films of YBa2Cu3O7-d (YBCO) are proving to be the strongest candidates for many widescale applications that are close to realization. We show that the relation between different defect structures and flux line pinning in these films exhibits universal features which are clearly displayed in a detailed analysis of the temperature-dependent behaviour of local critical currents. This allows us to identify different pinning mechanisms at different temperatures to be responsible for the found critical currents. Additionally, the presence of grain boundaries with very low misorientation angles affects the temperature stability of the critical currents which has important consequences for future applications.Comment: 5 pages, 4 figures To be published in Journal of Physics: Condensed matte

    Strain and composition dependence of the orbital polarization in nickelate superlattices

    Full text link
    A combined analysis of x-ray absorption and resonant reflectivity data was used to obtain the orbital polarization profiles of superlattices composed of four-unit-cell-thick layers of metallic LaNiO3 and layers of insulating RXO3 (R=La, Gd, Dy and X=Al, Ga, Sc), grown on substrates that impose either compressive or tensile strain. This superlattice geometry allowed us to partly separate the influence of epitaxial strain from interfacial effects controlled by the chemical composition of the insulating blocking layers. Our quantitative analysis reveal orbital polarizations up to 25%. We further show that strain is the most effective control parameter, whereas the influence of the chemical composition of the blocking layers is comparatively small.Comment: 9 pages, 8 figure

    Einheit in Differenzierung

    Get PDF

    Patient preferences for palliative treatment of locally advanced or metastatic gastric cancer and adenocarcinoma of the gastroesophageal junction: a choice-based conjoint analysis study from Germany

    Get PDF
    Background: Decisions on palliative chemotherapy (CT) for locally advanced or metastatic gastric cancer (mGC) require trade-offs between potential benefits and risks for patients. Healthcare providers and payers agree that patient-preferences should be considered. We conducted a choice-based conjoint (CBC) analysis study in pre-treated patients from Germany with mGC or locally advanced or metastatic adenocarcinoma of the gastroesophageal junction (mGEJ-Ca), to evaluate their preferences when hypothetically selecting a CT regimen. Methods: German oncologists and gastroenterologists were contacted to identify patients with mGC or mGEJ-Ca who had completed ≥2 cycles of palliative CT in first or later lines of therapy (CT ongoing or complete). The primary objective was to quantify patient preferences for palliative CT by CBC analysis. Six in-depth qualitative interviews identified 3 attributes: treatment tolerability, quality of life in terms of ability of self-care, and additional survival benefit. The CBC matrix was constructed with 4 factor levels per attribute and each participant was presented with 15 different iterations of these levels. A minimum of 50 participants was needed. Consenting patients completed the CBC survey, choosing systematically among profiles. CBC models were estimated by multinomial logistic regression (MLR) and hierarchical Bayesian (HB) analysis. Estimates of importance for each attribute and factor-level were calculated. Results: Fifty-five patients participated in the CBC survey (78.2% male, median age 63 years, 81.8% currently receiving CT). Across this sample, low treatment toxicity was ranked highest (44.6% relative importance, MLR analysis), followed by ability to self-care (32.3%), and an additional survival benefit of up to 3 months (3 months 23.1%, 2 months 18.3%, 1 month 11.2%). The MLR analysis showed high validity (certainty 37.9%, chi square p < 0.01, root-likelihood 0.505). The HB analysis yielded similar results. Conclusions: Patients’ preferences related to a new hypothetical palliative CT of mGC or mGEJ-Ca can be assessed by CBCanalysis. Although in real-life, patients initially need to decide on CT before they have any experience, and patients’ varied experiences with CT will have impacted specific responses, low toxicity and self-care ability were considered as most important by this group of patients with mGC or mGEJ-Ca

    The temperature-dependent magnetization profile across an epitaxial bilayer of ferromagnetic La2/3Ca1/3MnO3 and superconducting YBa2Cu3O7-d

    Full text link
    Epitaxial bilayers of ferromagnetic La2/3Ca1/3MnO3 (LCMO) and superconducting YBa2Cu3O7-d (YBCO) have been grown on single-crystalline SrTiO3 (STO) substrates by pulsed laser deposition. The Manganese magnetization profile across the FM layer has been determined with high spatial resolution at low temperatures by X-ray resonant magnetic reflectivity (XRMR). It is found that not only the adjacent superconductor but also the substrate underneath influences the magnetization of the LCMO film at the interfaces at low temperatures. Both effects can be investigated individually by XRMR

    Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features

    Get PDF
    Diffuse leptomeningeal glioneuronal tumors (DLGNT) represent rare CNS neoplasms which have been included in the 2016 update of the WHO classification. The wide spectrum of histopathological and radiological features can make this enigmatic tumor entity difficult to diagnose. In recent years, large-scale genomic and epigenomic analyses have afforded insight into key genetic alterations occurring in multiple types of brain tumors and provide unbiased, complementary tools to improve diagnostic accuracy. Through genome-wide DNA methylation screening of &gt; 25,000 tumors, we discovered a molecularly distinct class comprising 30 tumors, mostly diagnosed histologically as DLGNTs. Copy-number profiles derived from the methylation arrays revealed unifying characteristics, including loss of chromosomal arm 1p in all cases. Furthermore, this molecular DLGNT class can be subdivided into two subgroups [DLGNT methylation class (MC)-1 and DLGNT methylation class (MC)-2], with all DLGNT-MC-2 additionally displaying a gain of chromosomal arm 1q. Co-deletion of 1p/19q, commonly seen in IDH-mutant oligodendroglioma, was frequently observed in DLGNT, especially in DLGNT-MC-1 cases. Both subgroups also had recurrent genetic alterations leading to an aberrant MAPK/ERK pathway, with KIAA1549:BRAF fusion being the most frequent event. Other alterations included fusions of NTRK1/2/3 and TRIM33:RAF1, adding up to an MAPK/ERK pathway activation identified in 80% of cases. In the DLGNT-MC-1 group, age at diagnosis was significantly lower (median 5 vs 14 years, p &lt; 0.01) and clinical course less aggressive (5-year OS 100, vs 43% in DLGNT-MC-2). Our study proposes an additional molecular layer to the current histopathological classification of DLGNT, of particular use for cases without typical morphological or radiological characteristics, such as diffuse growth and radiologic leptomeningeal dissemination. Recurrent 1p deletion and MAPK/ERK pathway activation represent diagnostic biomarkers and therapeutic targets, respectively—laying the foundation for future clinical trials with, e.g., MEK inhibitors that may improve the clinical outcome of patients with DLGNT

    Equilibrium susceptibilities of superparamagnets: longitudinal & transverse, quantum & classical

    Full text link
    The equilibrium susceptibility of uniaxial paramagnets is studied in a unified framework which permits to connect traditional results of the theory of quantum paramagnets, \Sm=1/2, 1, 3/2, ..., with molecular magnetic clusters, \Sm\sim5, 10, 20, all the way up, \Sm=30, 50, 100,... to the theory of classical superparamagnets. This is done using standard tools of quantum statistical mechanics and linear response theory (the Kubo correlator formalism). Several features of the temperature dependence of the susceptibility curves (crossovers, peaks, deviations from Curie law) are studied and their scalings with \Sm identified and characterized. Both the longitudinal and transverse susceptibilities are discussed, as well as the response of the ensemble with anisotropy axes oriented at random. For the latter case a simple approximate formula is derived too, and its range of validity assessed, so it could be used in modelization of experiments.Comment: 32 pages, 5 figures. Submitted to J.Phys.Condens.Matte

    Thermodynamic analysis of the Quantum Critical behavior of Ce-lattice compounds

    Full text link
    A systematic analysis of low temperature magnetic phase diagrams of Ce compounds is performed in order to recognize the thermodynamic conditions to be fulfilled by those systems to reach a quantum critical regime and, alternatively, to identify other kinds of low temperature behaviors. Based on specific heat (CmC_m) and entropy (SmS_m) results, three different types of phase diagrams are recognized: i) with the entropy involved into the ordered phase (SMOS_{MO}) decreasing proportionally to the ordering temperature (TMOT_{MO}), ii) those showing a transference of degrees of freedom from the ordered phase to a non-magnetic component, with their Cm(TMO)C_m(T_{MO}) jump (ΔCm\Delta C_m) vanishing at finite temperature, and iii) those ending in a critical point at finite temperature because their ΔCm\Delta C_m do not decrease with TMOT_{MO} producing an entropy accumulation at low temperature. Only those systems belonging to the first case, i.e. with SMO0S_{MO}\to 0 as TMO0T_{MO}\to 0, can be regarded as candidates for quantum critical behavior. Their magnetic phase boundaries deviate from the classical negative curvature below T2.5T\approx 2.5\,K, denouncing frequent misleading extrapolations down to T=0. Different characteristic concentrations are recognized and analyzed for Ce-ligand alloyed systems. Particularly, a pre-critical region is identified, where the nature of the magnetic transition undergoes significant modifications, with its Cm/T\partial C_m/\partial T discontinuity strongly affected by magnetic field and showing an increasing remnant entropy at T0T\to 0. Physical constraints arising from the third law at T0T\to 0 are discussed and recognized from experimental results

    Intracerebral Human Regulatory T Cells: Analysis of CD4+CD25+FOXP3+ T Cells in Brain Lesions and Cerebrospinal Fluid of Multiple Sclerosis Patients

    Get PDF
    Impaired suppressive capacity of CD4+CD25+FOXP3+ regulatory T cells (Treg) from peripheral blood of patients with multiple sclerosis (MS) has been reported by multiple laboratories. It is, however, currently unresolved whether Treg dysfunction in MS patients is limited to reduced control of peripheral T cell activation since most studies analyzed peripheral blood samples only. Here, we assessed early active MS lesions in brain biopsies obtained from 16 patients with MS by FOXP3 immunohistochemistry. In addition, we used six-color flow cytometry to determine numbers of Treg by analysis of FOXP3/CD127 expression in peripheral blood and cerebrospinal fluid (CSF) of 17 treatment-naïve MS patients as well as quantities of apoptosis sensitive CD45ROhiCD95hi cells in circulating and CSF Treg subsets. Absolute numbers of FOXP3+ and CD4+ cells were rather low in MS brain lesions and Treg were not detectable in 30% of MS biopsies despite the presence of CD4+ cell infiltrates. In contrast, Treg were detectable in all CSF samples and Treg with a CD45ROhiCD95hi phenotype previously shown to be highly apoptosis sensitive were found to be enriched in the CSF compared to peripheral blood of MS patients. We suggest a hypothetical model of intracerebral elimination of Treg by CD95L-mediated apoptosis within the MS lesion
    corecore