53 research outputs found

    Magnon Heat Transport in (Sr,La)_14Cu_24O_41

    Full text link
    We have measured the thermal heat conductivity kappa of the compounds Sr_14Cu_24O_41 and Ca_9La_5Cu_24O_41 containing doped and undoped spin ladders, respectively. We find a huge anisotropy of both, the size and the temperature dependence of kappa which we interpret in terms of a very large heat conductivity due to the magnetic excitations of the one-dimensional spin ladders. This magnon heat conductivity decreases with increasing hole doping of the ladders. The magnon heat transport is analyzed theoretically using a simple kinetic model. From this analysis we determine the spin gap and the temperature dependent mean free path of the magnons which ranges by several thousand angstroms at low temperature. The relevance of several scattering channels for the magnon transport is discussed.Comment: 6 pages, 5 figures, submitted to Phys. Rev.

    Magnon-Hole Scattering and Charge Order in Sr14−xCaxCu24O41Sr_{14-x}Ca_xCu_{24}O_{41}

    Full text link
    The magnon thermal conductivity κmag\kappa_{\mathrm{mag}} of the hole doped spin ladders in Sr14−xCaxCu24O41\rm Sr_{14-x}Ca_xCu_{24}O_{41} has been investigated at low doping levels xx. The analysis of κmag\kappa_{\mathrm{mag}} reveals a strong doping and temperature dependence of the magnon mean free path lmagl_{\mathrm{mag}} which is a local probe for the interaction of magnons with the doped holes in the ladders. In particular, this novel approach to studying charge degrees of freedom via spin excitations shows that charge ordering of the holes in the ladders leads to a freezing out of magnon-hole scattering processes

    Magnon Heat Conductivity and Mean Free Paths in Two-Leg Spin Ladders: A Model-Independent Determination

    Full text link
    The magnon thermal conductivity κmag\kappa_{\mathrm{mag}} of the spin ladders in Sr14Cu24−xZnxO41\rm Sr_{14}Cu_{24-x}Zn_xO_{41} has been investigated at low doping levels x=0x=0, 0.125, 0.25, 0.5 and 0.75. The Zn-impurities generate nonmagnetic defects which define an upper limit for lmagl_{\mathrm{mag}} and therefore allow a clear-cut relation between lmagl_{\mathrm{mag}} and κmag\kappa_{\mathrm{mag}} to be established independently of any model. Over a large temperature range we observe a progressive suppression of κmag\kappa_{\mathrm{mag}} with increasing Zn-content and find in particular that with respect to pure Sr14Cu24O41\rm Sr_{14}Cu_{24}O_{41} κmag\kappa_{\mathrm{mag}} is strongly suppressed even in the case of tiny impurity densities where lmag≲374l_{\mathrm{mag}}\lesssim 374~{\AA}. This shows unambiguously that large lmag≈3000l_{\mathrm{mag}}\approx 3000~{\AA} which have been reported for Sr14Cu24O41\rm Sr_{14}Cu_{24}O_{41} and La5Ca9Cu24O41\rm La_{5}Ca_9Cu_{24}O_{41} on basis of a kinetic model are in the correct order of magnitude

    Comment on "Frustrating interactions and broadened magnetic interactions in the edge-sharing CuO_2 chains in La_5 Ca_9 Cu_24 O_41"

    Full text link
    Using Monte Carlo techniques, we show that the two--dimensional anisotropic Heisenberg model reproducing nicely inelastic neutron scattering measurements on La_5 Ca_9 Cu_24 O_41 (Matsuda et al. [Phys. Rev. B 68, 060406(R) (2003)]) seems to be insufficient to describe correctly measurements on thermodynamic quantities like the magnetization or the susceptibility. Possible reasons for the discrepancy are suggested.Comment: 3 pages, 2 EPS figures; part (ii) rewritten, some typos corrected; final version that has been accepted for publication in Phys. Rev.

    Optical spectroscopy of (La,Ca)14Cu24O41 spin ladders: comparison of experiment and theory

    Full text link
    Transmission and reflectivity of La_x Ca_14-x Cu_24 O_41 two-leg spin-1/2 ladders were measured in the mid-infrared regime between 500 and 12000 1/cm. This allows us to determine the optical conductivity sigma_1 directly and with high sensitivity. Here we show data for x=4 and 5 with the electrical field polarized parallel to the rungs (E||a) and to the legs (E||c). Three characteristic peaks are identified as magnetic excitations by comparison with two different theoretical calculations.Comment: 4 pages, 2 figures, submitted to SCES 200

    Magnetisation of hole-doped CuO2 spin chains in Sr14-xCaxCu24O41

    Full text link
    We report on magnetisation measurements of Sr14-xCaxCu24O41, with 0 <= x <= 12, in magnetic fields up to 16 T. The low temperature magnetic response of the CuO2 spin chains changes strongly upon doping. For x = 0, the ground state with nearly independent dimers is confirmed. Reduction of the number of holes in the chains through Ca-doping leads to an additional contribution to the magnetisation, which depends linearly on the magnetic field. Remarkably, the slope of this linear contribution increases with the Ca content. We argue that antiferromagnetic spin chains do not account for this behaviour but that the hole dynamics might be involved.Comment: In v2, spelling of author names has been change
    • …
    corecore