15,522 research outputs found

    Reducing Global Warming and Adapting to Climate Change: The Potential of Organic Agriculture

    Get PDF
    Climate change mitigation is urgent and adaptation to climate change is crucial, particularly in agriculture, where food security is at stake. Agriculture, currently responsible for 20-30% of global greenhouse gas emissions counting direct and indirect agricultural emissions), can however contribute to both climate change mitigation and adaptation. The main mitigation potential lies in the capacity of agricultural soils to sequester CO2 through building organic matter. This potential can be realized by employing sustainable agricultural practices, such as those commonly found within organic farming systems. Examples of these practices are the use of organic fertilizers and crop rotations including legumes leys and cover crops. Mitigation is also achieved in organic agriculture through the avoidance of open biomass burning and the avoidance of synthetic fertilizers and the related production emissions from fossil fuels. Common organic practices also contribute to adaptation. Building soil organic matter increases water retention capacity, and creates more stabile, fertile soils, thus reducing vulnerability to drought, extreme precipitation events, floods and water logging. Adaptation is further supported by increased agro-ecosystem diversity of organic farms, due to reduced nitrogen inputs and the absence of chemical pesticides. The high diversity together with the lower input costs of organic agriculture is key in reducing production risks associated with extreme weather events. All these advantageous practices are not exclusive to organic agriculture. However, they are core parts of the organic production system, in contrast to most non-organic agriculture, where they play a minor role only. Mitigation in agriculture cannot be restricted to the agricultural sector alone, though. Consumer behaviour strongly influences agricultural production systems, and thus their mitigation potential. Significant factors are meat consumption and food wastage. Any discussion on mitigation climate change in agriculture needs to address the entire food chain and needs to be linked to general sustainable development strategies. The main challenges to climate change mitigation and adaptation in organic agriculture and agriculture in general concern a)the understanding of some of the basic processes, such as the interaction of N2O emissions and soil carbon sequestration, contributions of roots to soil carbon sequestration and the life-cycle emissions of organic fertilizers such as compost; b) approaches for emissions accounting that adequately represent agricultural production systems with multiple and diverse outputs and that also encompass ecosystem services; c) the identification and implementation of most adequate policy frameworks for supporting mitigation and adaptation in agriculture, i.e: not putting systemic approaches at a disadvantage due to difficulties in the quantification of emissions, and in their allocation to single products; d) how to assure that the current focus on mitigation does not lead to neglect of the other sustainability aspects of agriculture, such as pesticide loads, eutrophication, acidification or soil erosion and e) the question how to address consumer behaviour and how to utilize the mitigation potential of changes in consumption patterns

    The Zeeman effect in the G band

    Full text link
    We investigate the possibility of measuring magnetic field strength in G-band bright points through the analysis of Zeeman polarization in molecular CH lines. To this end we solve the equations of polarized radiative transfer in the G band through a standard plane-parallel model of the solar atmosphere with an imposed magnetic field, and through a more realistic snapshot from a simulation of solar magneto-convection. This region of the spectrum is crowded with many atomic and molecular lines. Nevertheless, we find several instances of isolated groups of CH lines that are predicted to produce a measurable Stokes V signal in the presence of magnetic fields. In part this is possible because the effective Land\'{e} factors of lines in the stronger main branch of the CH A2Δ^{2}\Delta--X2Π^{2}\Pi transition tend to zero rather quickly for increasing total angular momentum JJ, resulting in a Stokes VV spectrum of the G band that is less crowded than the corresponding Stokes II spectrum. We indicate that, by contrast, the effective Land\'{e} factors of the RR and PP satellite sub-branches of this transition tend to ±1\pm 1 for increasing JJ. However, these lines are in general considerably weaker, and do not contribute significantly to the polarization signal. In one wavelength location near 430.4 nm the overlap of several magnetically sensitive and non-sensitive CH lines is predicted to result in a single-lobed Stokes VV profile, raising the possibility of high spatial-resolution narrow-band polarimetric imaging. In the magneto-convection snapshot we find circular polarization signals of the order of 1% prompting us to conclude that measuring magnetic field strength in small-scale elements through the Zeeman effect in CH lines is a realistic prospect.Comment: 22 pages, 6 figures. To be published in the Astrophysical Journa

    Non-Gaussian statistics and extreme waves in a nonlinear optical cavity

    Full text link
    A unidirectional optical oscillator is built by using a liquid crystal light-valve that couples a pump beam with the modes of a nearly spherical cavity. For sufficiently high pump intensity, the cavity field presents a complex spatio-temporal dynamics, accompanied by the emission of extreme waves and large deviations from the Gaussian statistics. We identify a mechanism of spatial symmetry breaking, due to a hypercycle-type amplification through the nonlocal coupling of the cavity field

    Conjoint Control of Hippocampal Place Cell Firing by Two Visual Stimuli: II. a Vector-Field Theory That Predicts Modifications of the Representation of the Environment

    Get PDF
    Changing the angular separation between two visual stimuli attached to the wall of a recording cylinder causes the firing fields of place cells to move relative to each other, as though the representation of the floor undergoes a topological distortion. The displacement of the firing field center of each cell is a vector whose length is equal to the linear displacement and whose angle indicates the direction that the field center moves in the environment. Based on the observation that neighboring fields move in similar ways, whereas widely separated fields tend to move relative to each other, we develop an empirical vector-field model that accounts for the stated effects of changing the card separation. We then go on to show that the same vector-field equation predicts additional aspects of the experimental results. In one example, we demonstrate that place cell firing fields undergo distortions of shape after the card separation is changed, as though different parts of the same field are affected by the stimulus constellation in the same fashion as fields at different locations. We conclude that the vector-field formalism reflects the organization of the place-cell representation of the environment for the current case, and through suitable modification may be very useful for describing motions of firing patterns induced by a wide variety of stimulus manipulations

    How Heavy Are the Tails of a Stationary HARCH(k) Process? A Study of the Moments

    Full text link
    How Heavy Are the Tails of a Stationary HARCH(k) Process? A Study of the Moment

    Non-Equilibrium Quantum Dissipation

    Full text link
    Dissipative processes in non-equilibrium many-body systems are fundamentally different than their equilibrium counterparts. Such processes are of great importance for the understanding of relaxation in single molecule devices. As a detailed case study, we investigate here a generic spin-fermion model, where a two-level system couples to two metallic leads with different chemical potentials. We present results for the spin relaxation rate in the nonadiabatic limit for an arbitrary coupling to the leads, using both analytical and exact numerical methods. The non-equilibrium dynamics is reflected by an exponential relaxation at long times and via complex phase shifts, leading in some cases to an "anti-orthogonality" effect. In the limit of strong system-lead coupling at zero temperature we demonstrate the onset of a Marcus-like Gaussian decay with {\it voltage difference} activation. This is analogous to the equilibrium spin-boson model, where at strong coupling and high temperatures the spin excitation rate manifests temperature activated Gaussian behavior. We find that there is no simple linear relationship between the role of the temperature in the bosonic system and a voltage drop in a non-equilibrium electronic case. The two models also differ by the orthogonality-catastrophe factor existing in a fermionic system, which modifies the resulting lineshapes. Implications for current characteristics are discussed. We demonstrate the violation of pair-wise Coulomb gas behavior for strong coupling to the leads. The results presented in this paper form the basis of an exact, non-perturbative description of steady-state quantum dissipative systems

    Dynamics of Magnetic Flux Elements in the Solar Photosphere

    Get PDF
    The interaction of magnetic fields and convection is investigated in the context of the coronal heating problem. We study the motions of photospheric magnetic elements using filtergrams obtained at the Swedish Vacuum Solar Telescope at La Palma. We use potential-field modeling to extrapolate the magnetic and velocity fields to larger height. We find that the velocity in the chromosphere can be locally enhanced at the separatrix surfaces between neighboring flux tubes. The predicted velocities are several km/s, significantly larger than those of the photospheric flux tubes, which may have important implications for coronal heating. sComment: submitted to ApJ, 21 pages, 10 figure

    Quantum cryptography with squeezed states

    Get PDF
    A quantum key distribution scheme based on the use of displaced squeezed vacuum states is presented. The states are squeezed in one of two field quadrature components, and the value of the squeezed component is used to encode a character from an alphabet. The uncertainty relation between quadrature components prevents an eavesdropper from determining both with enough precision to determine the character being sent. Losses degrade the performance of this scheme, but it is possible to use phase-sensitive amplifiers to boost the signal and partially compensate for their effect.Comment: 15 pages, no figure
    corecore